自然数幂和(递推式k^2方法)】的更多相关文章

先用这个方法顶一下!…
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数的方案数, c[i]表示红绿都是奇数的方案数. 那么有如下递推可能: 递推a[i+1]:1.到第i个为止都是偶数,且第i+1个染成蓝或黄:2.到第i个为止红绿恰有一个是奇数,并且第i+1个方块染成了奇数对应的颜色. 递推b[i+1]:1.到第i个为止都是偶数,且第i+1个染成红或绿:2.到第i个为止…
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d      C D   =   c*A+d*C  c*A+d*C 上代码 struct matrix { ll a[maxn][maxn]; }; matrix matrix_mul(matrix x,matrix y) { matrix temp; ;i<=n;i++) ;j<=n;j++) { tem…
Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6639    Accepted Submission(s): 2913 Problem Description Queues and Priority Queues are data structures which are known to most computer…
题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题,n^4在这个式子中是非线性的,后一项和前一项没有什么直接关系,所以模拟赛的时候想破头也不会做. 这里要做一个转换,把n^4变成一个线性的,也就是和(n-1)^4有关系的东西,而这个办法就是: n^4=(n-1+1)^4=(n-1)^4+4*(n-1)^3+6*(n-1)^2+4*(n-1)^1+(…
题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\begin{pmatrix}f(n)\\f(n-1)\\n^4\\n^3\\n^2\\n\\1\end{pmatrix}=\begin{pmatrix}1&2&1&4&6&4&1\\1&0&0&0&0&0&0\\0&a…
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你一个 n 行m 列 的格子图 一只马从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行. 题意很简单暴力dp的思路也很简单但是数据很恶心虽然远古一点,但毕竟是省选题 1 ≤ n ≤ 50,2 ≤ m ≤ 10^9 不过还是给了我们一点提示:n这么小? 总之我们先找出转移式对于每一个点…
Covering Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3078    Accepted Submission(s): 1117 Problem Description Bob's school has a big playground, boys and girls always play games here after s…
https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她传送到后面的监狱内查看,她比较懒,一般不查看完所有的监狱,只是从入口进入,然后再从出口出来就算完成任务了. 描述 头脑并不发达的warden最近在思考一个问题,她的闪烁技能是可以升级的,k级的闪烁技能最多可以向前移动k个监狱,一共有n个监狱要视察,她从入口进去,一路上有n个监狱,而且不会往回走,当然…
题意:有一个递推式f(x) 当 x < 10    f(x) = x.当 x >= 10  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10) 同时ai(0<=i<=9) 不是 0 就是 1: 现在给你 ai 的数字,以及k和mod,请你算出 f(x)%mod 的结果是多少 思路:线性递推关系是组合计数中常用的一种递推关系,如果直接利用递推式,需要很长的时间才能计算得出,时间无法承受,但是现在我们已知…
题目描述 WYF手中有这样一条递推式 WYF并不是想让你帮他做出结果,事实上,给定一个n,他能够迅速算出Fn.WYF只是想单纯的考验一下读者们. 输入描述 仅一行,三个整数N,F1,P 输出描述 仅一行,表示Fn模P的余数. 样例输入 5 1 100 样例输出 41 注释 对20%的数据,N≤1000. 对50%的数据,N≤10000000. 对100%的数据,N.F1≤1018,P≤109 解题思路 N<=1e18,最后的复杂度应该是O(1)或者O(lg(N)) 直接模拟式o(N^2)的,显然…
题目链接:传送门 描述石头游戏在一个 $n$ 行 $m$ 列 ($1 \le n,m \le 8$) 的网格上进行,每个格子对应一种操作序列,操作序列至多有 $10$ 种,分别用 $0 \sim 9$ 这 $10$ 个数字指明.操作序列是一个长度不超过 $6$ 且循环执行.每秒执行一个字符的字符串.每秒钟,所有格子同时执行各自操作序列里的下一个字符.序列中的每个字符是以下格式之一:数字 $0 \sim 9$:表示拿 $0 \sim 9$ 个石头到该格子.$NWSE$:表示把这个格子内所有的石头推…
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Submission(s): Problem Description Farmer John likes to play mathematics games with his N cows. Recently, they are attracted…
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757 A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6621    Accepted Submission(s): 4071 Problem Description Lele now is thin…
题意 设 $y = (5+2\sqrt 6)^{1+2^x}$,给出 $x, M$($0\leq x \leq 2^{32}, M \leq 46337$),求 $[y]\%M$. 分析 由通项推递推式?? 设 $A_n = (5 + 2\sqrt 6)^n, B_n = (5 - 2\sqrt 6)^n,C_n = A_n + B_n$, 显然 $C_n$ 是整数,且 $B_n$ 是小于1的,所以答案就是 $C_n - 1$. 通过推导: $C_n = A_n + B_n = (5+2\sqr…
题目:https://www.acwing.com/problem/content/228/ 题意:有一个二维矩阵,这里只给你第一行和第一列,要你求出f[n][m],关系式有    1,  f[0][m]=f[0][m-1]*10+3       2,   f[n][m]=f[n-1][m]+f[n][m-1] 思路:我们可以看出这里n的范围很小  ,m的范围很大,我们直接递推过去肯定超时,线性递推超时,那么肯定要用矩阵快速幂,但是这个有事二维的 那么我们只能想下怎么改成是一维的递推式,我们可以…
BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Water喜欢吃Meat, Fish 和 Chocolate,每个小时他会吃一种食物,但有些吃的顺序是危险/不高兴的.求在N小时内他的饮食方案有多少种不同组合.在连续三小时内这些组合是不可行的: unhappy : MMM FFF CCC dangerous : MCF FCM CMC CFC   思路1…
定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\log k \log n)\) 求第 n 项. 如果给出前 k 项,想知道 \(f_i\) ,可以在 \(O(k^2)\) 的时间内求出. 求 \(f_i\) 有 Berlekamp Massey 算法和 Reeds Sloane 算法,具体算法思想是啥咱也不知道,咱只知道这东西放进去就能跑. 前者需…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers…
这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k - 1}$是已知的. BM是用于求解线性递推式的工具,传入一个序列,会返回一个合法的线性递推式,一个$vector$,其中第$i$项表示上式的$a_{i + 1}$. CH用于快速求解常系数齐次线性递推的第$n$项,我们先会求出一个特征多项式$g$,$g$的第$k$项是$1$,其余项中第$k - i…
基准时间限制:1 秒 空间限制:131072 KB 分值: 640 F(x) = 1 (0 <= x < 4) F(x) = F(x - 1) + F(x - pi) (4 <= x) Pi = 3.1415926535..... 现在给出一个N,求F(N).由于结果巨大,只输出Mod 10^9 + 7的结果即可.   Input 输入一个整数N(1 <= N <= 10^6) Output 输出F(N) Mod 10^9 + 7 Input示例 5 Output示例 3 数…
历史性的时刻!!! 推了一晚上!和hyc一起萌萌哒地推出来了!! 被摧残蹂躏的智商啊!!! 然而炒鸡高兴!! (请不要介意蒟蒻的内心独白..) 设a[i]为扫到第i行时的方案数. 易知,对于一行1*4的格子,只有一种方案把它铺满. 首先,对于当前的第i行,如果它不和第i-1行有联系(也就是它是独立的一行),那么就有1*a[i-1]=a[i-1]种方案. 如果第i行和第i-1行有联系(2行间互相联系),那么共有一下四种方案: 如果第i行.第i-1行.第i-2行都有联系(3行间两两联系),那么共有两…
题意: 已知: 当x<10时:f(x)=x 否则:f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + --+ a9 * f(x-10); 求:f(x)%m的值. 思路: 矩阵快速幂加速递推. 嗯嗯 // by SiriusRen #include <cstdio> #include <cstring> using namespace std; int cases,k,ans,a[10][10],mod; struct matrix…
[背诵瞎讲] Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18) 看CSP看到一题"线性递推式",不会做,去问了问zsy怎么做,他并不想理我并丢给我以下方法: \[ \text{Cayley-Hamilton} \] 下文会根据CH定理证明的思路证明,没有形式上使用特征系统,因为我也不会... 一句话就是求: \[ f_n=\sum_{i=1}^m c_if_{n-i} \mod 998244353 \] 但这个算法卡常,zsy说1e5估…
题目大意:给定序列 1, 2, 5, 10, 21, 42, 85, 170, 341 …… 求第n项 模 m的结果 递推式 f[i]  = f[i - 2] + 2 ^ (i - 1); 方法一: 构造矩阵, 求递推式 方法二: 直接推公式,递推式求和,得到 f[n] = [2 ^ (n + 1) - 1] / 3 奇数, f[n] = [2 ^ (n + 1) - 2] / 3 偶数: 其实还可以进一步化简, 注意到 2 ^ 2k % 3 = 1, 2 ^ (2k + 1) % 3 = 2,…
是斐波那契数列问题 假设f(n)是n个台阶跳的次数:(假设已经调到第n个台阶,最后一次是由哪个台阶跳上来的) f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) == f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) == f(n) = 2*f(n-1) 所以,可以得出递推式: public static int jumpFloor(int n) { if (n <= 0) return 0; if (n =…
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医生告诉他,他吃这些零食的时候,如果在连续的三小时内他三种都吃了,并且在中间一小时 吃的是巧克力,他就会食物中毒.并且,如果河神在连续三小时内吃到相同种类的食物,他就会不开心. 假设每种类零食的数量都是无限的,那么如果经过n小时,让河神满意的零食吃法有多少种呢?(开心又不 会食物中毒的吃法)答案可能过…
分析: 我们可以写把转移矩阵A写出来,然后求一下它的特征多项式,经过手动计算应该是这样的p(x)=$x^k-\sum\limits_{i=1}^ka_i*x^{k-i}$ 根据Cayley-Hamilton定理可得,p(A)=0 他表示$A^n = f(A) * p(A) + g(A)$ 第一项的值是0,所以即$A^n=g(A)$,其中f(A) g(A)都是关于A的多项式,f(A)是多项式除法的商,g(A)是余数 我们考虑$x^n$这个多项式,我们去求出它对于$p(A)$的余数多项式$g(A)$…
ZOJ 3690 题意: 有n个人和m个数和一个k,如今每一个人能够选择一个数.假设相邻的两个人选择同样的数.那么这个数要大于k 求选择方案数. 思路: 打表推了非常久的公式都没推出来什么可行解,好不easy有了想法结果WA到天荒地老也无法AC.. 于是学习了下正规的做法,恍然大悟. 这道题应该用递推 + 矩阵高速幂. 我们设F(n) = 有n个人,第n个人选择的数大于k的方案数: G(n) = 有n个人.第n个人选择的数小于等于k的方案数: 那么递推关系式即是: F(1)=m−k,G(1)=k…
题目链接:http://hihocoder.com/problemset/problem/1143 这个递推还是很经典的,结果是斐波那契数列.f(i) = f(i-1) + f(i-2).数据范围太大了,应该用快速幂加速下. /* ━━━━━┒ギリギリ♂ eye! ┓┏┓┏┓┃キリキリ♂ mind! ┛┗┛┗┛┃\○/ ┓┏┓┏┓┃ / ┛┗┛┗┛┃ノ) ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┃┃┃┃┃┃ ┻┻┻┻┻┻ */ #incl…