前言 最近学了数位DP,感觉挺简单又实用.这道题就比较水,可以用300B的贪心过掉-网上似乎大多是贪心的题解,我就写写DP的做法 题意 给出正整数区间[L,R][L,R][L,R],定义荒谬值为 (去掉后导零的数的长度)*2-[去掉后导零之后末位为5].求荒谬值最小的数.若有多个则输出最小值. 状态定义为 (i,s,cnt0,flg,fl,fr)(i,s,cnt0,flg,f_l,f_r)(i,s,cnt0,flg,fl​,fr​) int iint\ iint i:表示当前在第 iii 位(最…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4029 题意概述:对于一个数字的荒谬程度定义如下:删除其所有的后缀0,然后得到的数字长度为a,如果最后一个数字是5,荒谬程度为2*a-1,否则荒谬程度为2*a现给出一些区间[L,R],询问区间内荒谬程度最小的价格.如果有多个,给出最低的那个. T<=100,1<=L,R<=10^9 分析: 本来以为找到了一个数位dp的题结果发现随意分析一下性质就成了个贪心.... 首先可以发现最后…
4029: [HEOI2015]定价 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4029 Description 在市场上有很多商品的定价类似于 999 元.4999 元.8999 元这样.它们和 1000 元.5000 元和 9000 元并没有什么本质区别,但是在心理学上会让人感觉便宜很多,因此也是商家常用的价格策略.不过在你看来,这种价格十分荒谬.于是你如此计算一个价格 p(p 为正整数)的荒谬程度: 1.首先将 p 看做一个…
题解: !!!!!! 分类讨论,情况挺多 #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long Lint; int TT; Lint L,R; ]; ]; ]; int main(){ scanf("%d",&TT); while(TT--){ memset(A,,sizeof(A)); memset(B,,si…
不得不说数位DP和博弈论根本不熟啊QAQ,首先这道题嘛~~~可以分成两个子问题: 有加密:直接算出0~n中二进制每一位为0或为1分别有多少个,然后分位累加求和就行了= = 无加密:分别算出0~n中二进制每一位为0或为1分别有多少个,然后对于为0或1该分别采取什么措施,对后面位数会有什么影响就行了 说白了就是这么简单(别打我QAQ)然后就是慢慢找到dp的正确方式了QAQ(请原谅我的蒟蒻,调了2天QAQ) CODE: #include<cstdio> #include<iostream>…
题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有  数位dp的题一般都会用到前缀数组,题目要求我们求b-a这个区间里各个数码出现的次数,我们可以分别求出(0,b)和(0,a-1)然后相减即可 具体分析请看代码,写的还算详细 #include <bits/stdc++.h> using namespace std; typedef long lo…
Description 在$[L, R]$找出有几个数满足两个条件 : 1 : 不同时含有$4$ 和 $8$ 2 : 至少有$3$个相邻的数相同 Solution 非常容易的数位DP, $pos$ 为当前第几位, $ex$ 表示是否出现过$4$ 或 $8$, $pre$表示 前面的是几, $num$表示有几个相邻的数相同. 答案就是 $sum[pos][ex][pre][num] $了QuQ. $DP$ 和 模板一样. 还需要注意如果$L = 1e10$ , 查$L - 1$ 时必须返回$0$…
传送门 Solution 这道数位$DP$看的我很懵逼啊... 首先我们肯定要先预处理出 $12$位乘起来的所有的可能情况, 记录入数组 $b$, 发现个数并不多, 仅$1e4$不到. 然后我们考虑算出有多少的$x$ 使得$f(x) = y$, 并记录个数到$ans[y]$ 中. 然后? 然后我就不会啦QAQ 定义数组$f[ i ][ j ][ k ]$ , $i$ 表示 $i$位数字, $j$ 表示 所有位上的数乘起来为 $b[j]$ , $k$ 表示前 $i$ 位是否比 $N$的前$i$位大…
给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b]内各位数字之和为x且能整除x的数字个数. 那么我们只需要数位dp一波即可. 令dp[pos][i][x]表示有pos位且数字之和为x的数mod P=i的数字个数. 则转移方程显然可得. # include <cstdio> # include <cstring> # include…
注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的推导,得到 x^2x=x+2x-2(x&2x)==3x; 3x-2*(x&2x)==3x; x&2x==0; x&(x<<1)==0 也就是说x在二进制下不能有相邻的1 第一问用数位dp瞎搞一下就行 第二问,考虑递推,设f[i]为n==i的答案,已知f[n-1],f…