题解 [BZOJ4144] Petrol】的更多相关文章

题目描述 ​ 有一张 n 个点 m 条边的无向图,其中有 s 个点上有加油站.有 Q 次询问(a,b,c), 问能否开一辆油箱容积为 c 的车从 a 走到 b.(a,b均为加油站) 输入格式 ​ 第一行三个整数 n,s,m. ​ 接下来一行 s 个数,表示有加油站的节点. ​ 接下来 m 行,每行三个整数 (x,y,z),表示一条连接 x,y,权值为 z 的边. ​ 接下来一行一个整数 Q. ​ 接下来 Q 行,每行三个整数 (a,b,c),表示询问. 输出格式 ​ 共 Q 行,若对应询问可行,…
题面 怎么是权限题啊 题解 有一次考过, 但是不记得了 如果每个点都是加油站的话, 这道题就是货车运输 考虑如何转化 我们可以设…
题意:给你一张n个点m条边的带权无向图.其中由s个点是加油站.询问从x加油站到y加油站,油箱容量<=b,能否走到? n,m,q,s<=20W,b<=2e9. 标程: #include<cstdio> #include<algorithm> #include<queue> #include<cstring> using namespace std; typedef long long ll; int read() { ;char ch=get…
[BZOJ4144][AMPPZ2014]Petrol Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是x,终点是y,油量上限为b,且保证x点和y点都是加油站,请回答能否从x走到y. Input 第一行包含三个正整数n,s,m(2<=s<=n<=200000,1<=m<=200000),表示点数.加油站数和边数. 第二行包含s…
题解:  首先注意到起点和终点都是加油站;          假设中途经过某个非加油站的点u,u连到v,离u最近的加油站是x,那么从u到x加油后回到u,再到v一定不比直接从u到v差:        因为u一定从某个加油站来,设最后经过的加油站为y,u点油量为B1 = b - dis(y,u),而如果u不可以走到x一定不能走到其他任何加油站自然也到不了终点,如果可以到x加满油也一定可以再从x回来,油量为B2 = b-dis(x,u)  , 因为dis(y,u) >= dis(x,u)所以B1 <…
题目链接 BZOJ4144 题解 这题好妙啊,,orz 假设我们在一个非加油站点,那么我们一定是从加油站过来的,我们剩余的油至少要减去这段距离 如果我们在一个非加油站点,如果我们到达不了任意加油站点,我们一定废了 那么我们在一个非加油站点,就一定可以到达最近的加油站,而由于我们剩余的油是要减去到加油站距离的,所以我们剩余的油一定是\(b - d\),\(d\)表示到达最近加油站的距离.假如我们没有那么多油,我们一定可以开过去再回来,就有了 因此,我们在任意一个点的油量确定,两点之间可以直达,当且…
Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是x,终点是y,油量上限为b,且保证x点和y点都是加油站,请回答能否从x走到y. Input 第一行包含三个正整数n,s,m(2<=s<=n<=200000,1<=m<=200000),表示点数.加油站数和边数. 第二行包含s个互不相同的正整数c[1],c[2],...cs,表示每…
题意 题目链接 Sol 做的时候忘记写题解了 可以参考这位大爷 #include<bits/stdc++.h> #define Pair pair<int, int> #define MP make_pair #define fi first #define se second using namespace std; const int MAXN = 2e6 + 10; inline int read() { char c = getchar(); int x = 0, f =…
link 题意: 给一个n个点m条边的带权无向图,其中k个点是加油站,每个加油站可以加满油,但不能超过车的油量上限.有q个询问,每次给出x,y,b,保证x,y都是加油站,问一辆油量上限为b的车从x出发能否到达y? $n,m,s,q\leq 2\times 10^5.$ 题解: 只有加油站是有用的点,问题可以转化为求一个加油站的排列,使得相邻两个加油站距离最大值小于等于油量上限.一个简单粗暴的想法是求出加油站两两最短路,然后直接上MST,离线处理询问. 其实上述的暴力做法是有很多冗余的(有很多边用…
题意 题目链接 分析 假设在 \(a \rightarrow b\) 的最短路径中出现了一个点 \(x\) 满足到 \(x\) 最近的点是 \(c\) ,那么我们完全可以从 \(a\) 直接走到 \(c\),因为 \({dis}_{ax}\geq {dis}_{cx}\) ,而 \(c\) 又是当前最近的能够到达的加油站,所以这样走一定会更优(最坏就是先到 \(c\) 再回 \(x\)).而接下来就可以只考虑从 \(c\rightarrow b\) 的最短路了( \(a,b,c\) 都是加油站)…