ML(2)--感知机】的更多相关文章

机器学习算法 原理.实现与实践  —— 感知机 感知机(perceptron)是二分类的线性分类模型,输入为特征向量,输出为实例的类别,取值+1和-1.感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,引入了基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型. 1. 感知机模型 假设输入空间(特征空间)是$\mathcal{X}\subset R^n$,输出空间是$\mathcal{Y}=\{-1,+1\}$.输入$x\in\mathcal{X}$表示实例的特征向…
案例银行办信用卡--获得感知机 我们到银行办信用卡时,银行并不是直接就给你办卡的,而是会根据你的一些个人信息.消费信息.个人信誉等指标综合考虑后,才会决定是否给你办卡(不像现在银行办信用卡有点随意). 银行要考虑的指标比如age,salary,year in job,current debt等我们称为特征,假设银行要考虑的特征有n个: 感知机 感知机(有些地方叫感知器)是二分类模型,属于线性分类.中g作为分类器,如果在是二维平面中,该分类器是一条直线, 由于在更高维中分析方法是和二维类似,所以这…
感知机 Perceptrons 学习Hinton神经网络公开课的学习笔记 https://class.coursera.org/neuralnets-2012-001 1 感知机历史 在19世纪60年代由Frank Rosenblatt提出,是神经网络和支持向量机的基础. 2 模型表示 在hinton的课件里面给出的是Binary threshold neurons,y取值是{0,1} 在<统计学习方法>中给出的模型公式: 几何解释:线性方程 对应于特征空间中的一个超平面S 3 代价函数 co…
Hinton课程第二课 一.NN结构的主要类型的概述 这里的结构就是连接在一起的神经元.目前来说,在实际应用中最常见的NN就是前向NN,他是将数据传递给输入单元,通过隐藏层最后到输出层的单元:一个更有趣的结构是递归神经网络RNN,这种网络能够将信息保存很久,所以能够表现各种有趣的震荡,但是却也难训练,部分原因是因为他们太复杂了,不过最近的人们却也通过这种网络完成了很多不可思议的事情:最后要介绍的就是对称连接网络,即使在两个单元之间的两个方向上权重是一样的. 前向NN: 上图就是前向NN,最底层就…
本文主要参考英文教材Python Machine Learning第二章.pdf文档下载链接: https://pan.baidu.com/s/1nuS07Qp 密码: gcb9. 本文主要内容包括利用Python实现一个感知机模型并利用这个感知机模型完成一个分类任务. Warren和McCullock于1943年首次提出MCP neuron神经元模型[1],之后,Frank Rosenblatt在MCP neuron model的基础之上提出了感知机Perceptron模型[2].具体细节请阅…
诗人般的机器学习,ML工作原理大揭秘 https://mp.weixin.qq.com/s/7N96aPAM_M6t0rV0yMLKbg 选自arXiv 作者:Cassie Kozyrkov 机器之心编译 机器之心授权(禁止二次转载) 很多人会认为机器学习相比于传统编程是一种编写学习过程的方法,它性能非常神奇且高大上.但是在本文中,谷歌首席决策工程师 Cassie Kozyrkov 小姐姐以非常形象的比喻介绍了机器学习核心原理. 机器学习使用数据中的模式来标记事物.听起来好像很神奇,实际上核心概…
上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全互联,神经元之间不存在同层或跨层连接:输入层神经元仅接受外界输入,不进行函数处理:隐藏层与输出层包含功能神经元,对信号进行加工:最终结果由输出层神经元输出.“前馈”是说网络拓补结构上不存在环路或回路,而不是指网络信号不能向后传递. 前向传播(FP) 所谓前向传播,就是根据一些列包含偏置项的权重矩阵Θ…
Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,“逻辑”是Logistic的音译,和真正的逻辑没有任何关系. 模型 线性模型 由于逻辑回归是一种分类方法,所以我们仍然以最简的二分类为例.与感知机不同,对于逻辑回归的分类结果,y ∈ {0, 1},我们需要找到最佳的hθ(x)拟合数据. 这里容易联想到线性回归.线性回归也可以用于分类,但是很多时候,尤其是二分类的时候,线性回归并不能很好地工作,因为分类不是连续的函数,其结果只能是固定的离散值.设想一下有线性回…
感知器(PLA——Perceptron Learning Algorithm),也叫感知机,处理的是机器学习中的分类问题,通过学习得到感知器模型来对新实例进行预测,因此属于判别模型.感知器于1957年提出,是神经网络的基础. 模型 以最简单的二分类为例,假设医院需要根据肿瘤患者的病患特征(x1肿瘤大小,x2肿瘤颜色),判断肿瘤是良性(+1)还是恶性(-1),那么所有数据集都可以在一个二维空间表示:如果能找到一条直线将所有1和-1分开,这个数据集就是线性可分的,否则就是线性不可分.将两个特征向量分…
Hi, Long time no see. Briefly, I plan to step into this new area, data analysis. In the past few years, I have tried Linux programming, device driver development, android application development and RF SOC development. Thus, "data analysis become my…