转载:https://blog.csdn.net/wangxiaojun911/article/details/6890282 Gauss–Seidelmethod 对应于形如Ax = b的方程(A为对称正定矩阵或者Diagonally dominant),可求解如下: Jacobi method 另一种方法是Jacobimethod,它与Gauss–Seidelmethod类相似,但是要求A必须是Diagonally dominant.把A分解成D+U+L,仅求D的逆矩阵. Dx = b –…
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details/53426350 梯度迭代树 算法简介: 梯度提升树是一种决策树的集成算法.它通过反复迭代训练决策树来最小化损失函数.决策树类似,梯度提升树具有可处理类别特征.易扩展到多分类问题.不需特征缩放等性质.Spark.ml通过使用现有decision tree工具来实现. 梯度提升树依次迭代训练一系列的…
Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3). 使用条件&范围通常可以在任何图中使用,包括有向图.带负权边的图. Floyd-Warshall 算法用来找出每对点之间的最短距离.它需要用邻接矩阵来储存边,这个算法通过考虑最佳子路径来得到最佳路径. 1.注意单独一条边的路径也不一定是最佳路径.2.从任意一条单边路径开始.所有两点之间的距离是边的权,或者无穷大,如果两点之间没有边相连.对于每一对顶点 u 和 v,看看是否存在一个顶点 w…
链接分析算法之:HITS算法     HITS(HITS(Hyperlink - Induced Topic Search) ) 算法是由康奈尔大学( Cornell University ) 的Jon Kleinberg 博士于1997 年首先提出的,为IBM 公司阿尔马登研究中心( IBM Almaden Research Center) 的名为“CLEVER”的研究项目中的一部分. HITS算法是链接分析中非常基础且重要的算法,目前已被Teoma搜索引擎(www.teoma.com)作为链…
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都当作潜在的聚类中心(称之为exemplar),然后数据点两两之间连线构成一个网络(相似度矩阵),再通过网络中各条边的消息(responsibility和availability)传递计算出各样本的聚类中心. 2.相关概念(假如有数据点i和数据点j)        (图1)              …
摘要 随着信息技术的不断发展,人类可以很容易地收集和储存大量的数据,然而,如何在海量的数据中提取对用户有用的信息逐渐地成为巨大挑战.为了应对这种挑战,数据挖掘技术应运而生,成为了最近一段时期数据科学的和人工智能领域内的研究热点.数据集中的频繁模式作为一种有价值的信息,受到了人们的广泛关注,成为了数据挖掘技术研究领域内的热门话题和研究重点. 传统的频繁模式挖掘技术被用来在事务数据集中发现频繁项集,然而随着数据挖掘技术应用到非传统领域,单纯的事务数据结构很难对新的领域的数据进行有效的建模.因此,频繁…
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值.然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值.EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计. 1.经典的三硬币模型 引入一个例子来说明隐变量存在的问题.假设有3枚硬币,分别记作A,B,C.这些硬币正面出现的概率分别是π,p,q.我们的实验过程如下,先投掷硬…
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,私认为这种方法用的比较少,因为需要人为的去设定外部参考模型. 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这类称为内…
一.相异度计算  在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的. 可是,计算机没有这样的直观感受能力,我们必须对相异度在数学上进行定量定义.       设 ,当中X.Y是两个元素项,各自具有n个可度量特征属性,那么X和Y的相异度定义为:  ,当中R为实数域. 也就是说相异度是两个元素对实数域的一个映射.所映射的实数定量表示两个元素的相异度.…
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都当作潜在的聚类中心(称之为exemplar),然后数据点两两之间连线构成一个网络(相似度矩阵),再通过网络中各条边的消息(responsibility和availability)传递计算出各样本的聚类中心. 2.相关概念(假如有数据点i和数据点j)        (图1)              …