spark复习笔记(2)】的更多相关文章

使用spark实现work count ---------------------------------------------------- (1)用sc.textFile(" ") 来实现文件的加载 val rdd1 = sc.testFile("home/centos/test.txt");//加载文本文件,以换行符的方式切割文本文件.Array(hello world1 ,.........),产生第一个弹性分布式数据集 (2)元素拿来之后对集合中的每个元…
一.介绍 1.sparkStreaming是核心模块Spark API的扩展,具有可伸缩,高吞吐量以及容错的实时数据流处理等.数据可以从许多来源(如Kafka,Flume,Kinesis或TCP套接字)中获取.并且可以使用以高级函数表示的复杂算法进行处理map,例如reduce,join和window.最后,处理后的数据可以推送到文件系统,数据库和实时仪表盘.[DStresam]:离散流,连续的RDD序列.准实时计算,以batch处理作业. 2.在内部,它的工作原理如下.Spark Stream…
一.saprkSQL模块,使用类sql的方式访问Hadoop,实现mr计算,底层使用的是rdd 1.hive //hadoop  mr  sql 2.phenoix //hbase上构建sql的交互过程 该模块能在spark上运行sql语句 3.DataFrame //数据框,表 在spark中的数据框,sparkSQL就能以完全分布式的方式来处理数据.组合数据框可以来自各种数据源来进行查询的处理 4.SparkSQL //SQL  |  DataFrame API 5.RDD[Customer…
在spark中最重要的功能之一是跨操作在内存中持久化数据集.当你持久化一个RDD的时候,每个节点都存放了一个它在内存中计算的一个分区,并在该数据集的其他操作中进行重用,持久化一个RDD的时候,节点上的每个分区都会保存到内存中,这使得将来的action更加的快. 缓存技术是迭代算法和交互式查询的重要工具 可以使用persist()和cache()方法进行rdd的持久化,persist()是持久化到磁盘,而cache()是缓存到内存 action第一次计算的时候才会发生persist() spark…
一.数据倾斜 spark数据倾斜,map阶段对key进行重新划分.大量的数据在经过hash计算之后,进入到相同的分区中,zao…
一.RDD变换 1.返回执行新的rdd的指针,在rdd之间创建依赖关系.每个rdd都有一个计算函数和指向父rdd的指针 Spark是惰性的,因此除非调用某个转换或动作,否则不会执行任何操作,否则将触发工作创建和执行. 2.map()是对每个元素进行变换,应用变换函数,返回的是一个新的分布式数据集,map就是对分区中的每个元素进行一个函数的调用,所以导致出现了那么多: map() //对每个元素进行变换,应用变换函数,(T)=>V, package com.jd.test import org.a…
0.spark是基于hadoop的mr模型,扩展了MR,高效实用MR模型,内存型集群计算,提高了app处理速度. 1.特点:(1)在内存中存储中间结果 (2)支持多种语言:java scala python (3)内置了80多种算子 2.sparkCore模块(通用执行引擎) (1)通用的执行引擎,提供内存计算和对外部数据集的引用. 3.spark sql (1)Spark SQL是Spark Core之上的组件,引入了新的数据抽象称为SchemaRDD,它为结构化和半结构化数据提供支持. 4.…
1.[start-all.sh] #!/usr/bin/env bash # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. #…
在windows上实现wordcount单词统计 一.编写scala程序,引入spark类库,完成wordcount 1.sparkcontextAPI sparkcontext是spark功能的主要入口点,代表着到spark集群的连接,可用于在这些集群上创建RDD(弹性分布式数据集),累加器和广播变量.在每一个JVM上面只允许一个活跃的sparkcontext.在创建一个新的RDD之前,你应该停止这个活跃的SparkContext 2.sparkconf配置对象 sparkconf是对spar…
wordcount是spark入门级的demo,不难但是很有趣.接下来我用命令行.scala.Java和python这三种语言来实现单词统计. 一.使用命令行实现单词的统计 1.首先touch一个a.txt文本文件 2.加载文本:产生弹性分布式数据集,用sc.textFile()加载文本文件到内存中去,加载到内存之后,整个RDD就是一个数组,就以换行符来做分隔 val rdd1 = sc.textFile("/home/centos/a.txt") 3.对2中产生的数组按空格进行切割,…