梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hinton为自己的研究多次走动人际关系使得其论文出现在了当时的<nature>上,从此GD开始得到业界的关注.这为后面各种改进版GD的出现与21世纪深度学习的大爆发奠定了最重要的基础. PART1:original版的梯度下降法 首先已经有了 对weights和bias初始化过的神经网络计算图,也有一…
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向,对应J增大的方向.对于蓝点,斜率为负,西塔减少时J增加,西塔增加时J减少,我们想让J减小,对应导数的负方向,因此前面需要加上负号. (伊塔对应步长)-------(1) 用当前点的西塔加上(1)式,得到新的西塔.因为导数是负值,前面又有负号,所以整个是正值,加上一个正值对应西塔在增大. 多维函数中,…
最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向  d=−gk…
在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \mathbb{R}^{n\times d}$,这是我们的输入特征矩阵. 2. 我们有一个响应的响应向量$\mathbf{y}\in \mathbb{R}^n$. 3. 我们将使用线性模型来fit上述数据.因此我们将优化问题形式化成如下形式:$$\arg\min_{\mathbf{w}}f(\math…
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢. 中文名 梯度下降 外文名 steepest descent (gradient descent) 用于 求解非线性方程组 类型 最优化算法 目录 1 简介 2 求解过程 3 例子 4 缺点 简介 梯度下降法(gradient de…
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST. …
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Linear Regression),首先给出一个关于房屋的经典例子, 面积(feet2) 房间个数 价格(1000$) 2104 3 400 1600 3 330 2400 3 369 1416 2 232 3000 4 540 ... ... .. 上表中面积和房间个数是输入参数,价格是所要输出的解.面…
1. 什么是梯度下降法?   梯度下降法(Gradient Decent)是一种常用的最优化方法,是求解无约束问题最古老也是最常用的方法之一.也被称之为最速下降法.梯度下降法在机器学习中十分常见,多用于求解参数的局部最小值问题. 2. 梯度下降法的原理 引用维基百科中的一张图 简单来说,梯度下降法就是利用了函数沿梯度方向下降最快的原理来求解极小值,当然也可以沿梯度上升方向求解极大值.具体的原理就不赘述了,可以参考Gradient Decent 的维基百科 梯度下降法. 3. 梯度下降法的求解步骤…
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training set)yi,i = 1,2,...,m,引入学习算法参数(parameters of learning algorithm)θ1,θ2,.....,θn,构造假设函数(hypothesis function)h(x)如下: 定义x0 = 1,则假设函数h(x)也可以记为以下形式: 这里xi(i = 1…
梯度下降算法 Gradient Descent 梯度下降算法是一种被广泛使用的优化算法.在读论文的时候碰到了一种参数优化问题: 在函数\(F\)中有若干参数是不确定的,已知\(n\)组训练数据,期望找到一组参数使得残差平方和最小.通俗一点地讲就是,选择最合适的参数,使得函数的预测值与真实值最相符. \[\{ n^*,m^*,p^* ...\} = arg \ \mathop{min} _{\{n,m,p,.. \} } \sum_{i=1}^n (\hat{f}_i - f_i)^2 \] 其中…