论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxiang Zhao, Xiang Zhang, Suhang Wang论文来源:2021, WSDM论文地址:download 论文代码:download 1 Introduction 节点分类受限与不同类的节点数量不平衡,本文提出过采样方法解决这个问题. 图中类不平衡的例子:   图中:每个蓝色节点…
摘要 许多公司为用户提供神经网络预测服务,应用范围广泛.然而,目前的预测系统会损害一方的隐私:要么用户必须将敏感输入发送给服务提供商进行分类,要么服务提供商必须将其专有的神经网络存储在用户的设备上.前者损害了用户的个人隐私,而后者暴露了服务提供商的专有模式. 我们设计.实现并评估了DELPHI,这是一个安全的预测系统,允许双方在不泄露任何一方数据的情况下执行神经网络推理.DELPHI通过同时联合设计密码学和机器学习来解决这个问题.我们首先设计了一种混合加密协议,在通信和计算成本上比之前的工作有所…
通过训练多层神经网络可以将高维数据转换成低维数据,其中有对高维输入向量进行改造的网络层.梯度下降可以用来微调如自编码器网络的权重系数,但是对权重的初始化要求比较高.这里提出一种有效初始化权重的方法,允许自编码器学习低维数据,这种降维方式比PCA表现效果更好. 降维有利于高维数据的分类.可视化.通信和存储.简单而普遍使用的降维方法是PCA(主要成分分析)--首先寻找数据集中方差最大的几个方向,然后用数据点在方向上的坐标来表示这条数据.我们将PCA称作一种非线性生成方法,它使用适应性的.多层"编码&…
在这篇论文中,作者提出了一种更加通用的池化框架,以核函数的形式捕捉特征之间的高阶信息.同时也证明了使用无参数化的紧致清晰特征映射,以指定阶形式逼近核函数,例如高斯核函数.本文提出的核函数池化可以和CNN网络联合优化. Network Structure Overview Kernel Pooling Method The illustration of the tensor product A summary of pooling strategies Experiment Evaluation…
周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recognition from depth maps.这篇文章是关于Sparsing Coding的.Sparse coding并不是我的研究方向.在此仅仅是做个文献阅读后的笔记,权当开拓下我的视野. 从标题就能够看出,这篇论文试图通过学习到group sparsity和geometry constrain…
一.Abstract 从近期对unsupervised learning 的研究得到启发,在large-scale setting 上,本文把unsupervised learning 与supervised learning结合起来,提高了supervised learning的性能.主要是把autoencoder与CNN结合起来 二.Key words: SAE;SWWAE; reconstruction:encoder:decoder;VGG-16;Alex-Net 三. Motivati…
The single-cell transcriptional landscape of mammalian organogenesis 老板已经提了无数遍的文章,确实很nb,这个工作是之前我们无法想象得,想想如何把我们的数据和他们的数据整合到一起. 文献阅读 | Molecular Architecture of the Mouse Nervous System 这篇侧重强调的是神经系统的单细胞发育过程测序. Mouse Organogenesis Cell Atlas (MOCA) - 所有…
论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks> 论文作者:Y ushi Chen, Member , IEEE, Hanlu Jiang, Chunyang Li, Xiuping Jia, Senior Member , IEEE, and Pedram Ghamisi, Member , IEEE 论文发表年份:20…
HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL  DEEP  CONVOLUTIONAL NEURAL NETWORK 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7730324 1.文章简介: 该论文是用双通道卷积神经网络CNN分别提取空谱信息,然后将得到的抽象特征级联为全连接层的输入,以此作为空谱联合信息输入两层全连接层以及softmax层.此外,文中针对小…
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010大赛中的120万张高清图像分为1000个不同的类别.对测试数据,我们得到了top-1误差率37.5%,以及top-5误差率17.0%,这个效果比之前最顶尖的都要好得多.该神经网络有…