【Spark】Sparkstreaming-性能调优】的更多相关文章

SparkStreaming性能调优 合理的并行度 减少批处理所消耗时间的常见方式还有提高并行度.有以下三种方式可以提高并行度: 1.增加接收器数目 有时如果记录太多导致单台机器来不及读入并分发的话,接收器会成为系统瓶颈.这时你就需要通过创建多个输入DStream(这样会创建多个接收器)来增加接收器数目,然后使用union 来把数据合并为一个数据源. 2.将收到的数据显式地重新分区 如果接收器数目无法再增加,你可以通过使用DStream.repartition 来显式重新分区输入流(或者合并多个…
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. 基本概念和原则 <1>  每一台host上面可以并行N个worker,每一个worker下面可以并行M个executor,task们会被分配到executor上面 去执行.Stage指的是一组并行运行的task,stage内部是不能出现shuffle的,因为shuffle的就像篱笆一样阻止了并行task的运 行,遇到shuffle就意味着到了stage的边界. <2>  CPU的c…
Spark Streaming性能调优详解 Spark  2015-04-28 7:43:05  7896℃  0评论 分享到微博   下载为PDF 2014 Spark亚太峰会会议资料下载.<Hadoop从入门到上手企业开发视频下载[70集]>.<炼数成金-Spark大数据平台视频百度网盘免费下载>.<Spark 1.X 大数据平台V2百度网盘下载[完整版]>.<深入浅出Hive视频教程百度网盘免费下载> 转发微博有机会获取<Spark大数据分析实战…
下面这些关于Spark的性能调优项,有的是来自官方的,有的是来自别的的工程师,有的则是我自己总结的. Data Serialization,默认使用的是Java Serialization,这个程序员最熟悉,但是性能.空间表现都比较差.还有一个选项是Kryo Serialization,更快,压缩率也更高,但是并非支持任意类的序列化. Memory Tuning,Java对象会占用原始数据2~5倍甚至更多的空间.最好的检测对象内存消耗的办法就是创建RDD,然后放到cache里面去,然后在UI 上…
原文链接:Spark Streaming性能调优详解 Spark Streaming提供了高效便捷的流式处理模式,但是在有些场景下,使用默认的配置达不到最优,甚至无法实时处理来自外部的数据,这时候我们就需要对默认的配置进行相关的修改.由于现实中场景和数据量不一样,所以我们无法设置一些通用的配置(要不然Spark Streaming开发者就不会弄那么多参数,直接写死不得了),我们需要根据数据量,场景的不同设置不一样的配置,这里只是给出建议,这些调优不一定试用于你的程序,一个好的配置是需要慢慢地尝试…
来自:http://blog.csdn.net/u012102306/article/details/51637366 资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了.所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能.以下参数就是Spark中主要的资源参数,每个参数都对应着作业运行原理中的某个部分,我们同时也给出了一个调优的参考值. num-execu…
1. 常规性能调优 一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略.  --driver-memory 配置Driver内存(影响不大) 内存大小影响不大 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本所示: /usr/opt/modules/spark/bin/spark-submit \ --class com.atg…
数据接收并行度调优(一) 通过网络接收数据时(比如Kafka.Flume),会将数据反序列化,并存储在Spark的内存中.如果数据接收称为系统的瓶颈,那么可以考虑并行化数据接收.每一个输入DStream都会在某个Worker的Executor上启动一个Receiver,该Receiver接收一个数据流.因此可以通过创建多个输入DStream,并且配置它们接收数据源不同的分区数据,达到接收多个数据流的效果.比如说,一个接收两个Kafka Topic的输入DStream,可以被拆分为两个输入DStr…
1.1.1     常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示:. /usr/opt/modules/spark/bin/spark-submit \ --class com.atguigu.spark.Analysis \ --num-…
当你开始编写 Apache Spark 代码或者浏览公开的 API 的时候,你会遇到各种各样术语,比如transformation,action,RDD(resilient distributed dataset) 等等. 了解到这些是编写 Spark 代码的基础. 同样,当你任务开始失败或者你需要透过web界面去了解自己的应用为何如此费时的时候,你需要去了解一些新的名词: job, stage, task.对于这些新术语的理解有助于编写良好 Spark 代码.这里的良好主要指更快的 Spark…