tf.expand_dims 来增加维度】的更多相关文章

主要是因为tflearn官方的例子总是有embeding层,去掉的话要conv1d正常工作,需要加上expand_dims network = input_data(shape=[None, 100], name='input') network = tf.expand_dims(network, 2) branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2") ref…
1. rnn.BasicLSTMCell(num_hidden) #  构造单层的lstm网络结构 参数说明:num_hidden表示隐藏层的个数 2.tf.nn.dynamic_rnn(cell, self.x, tf.float32) # 执行lstm网络,获得state和outputs 参数说明:cell表示实例化的rnn网络,self.x表示输入层,tf.float32表示类型 3. tf.expand_dim(self.w, axis=0) 对数据增加一个维度 参数说明:self.w表…
tf.expand_dims和tf.squeeze函数 一.tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, dim=None) Inserts a dimension of 1 into a tensor’s shape. 在第axis位置增加一个维度 Given a tensor input, this operation inserts a dimension of 1 at the dimensio…
from http://blog.csdn.net/qq_31780525/article/details/72280284 tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, dim=None) Inserts a dimension of 1 into a tensor’s shape.  在第axis位置增加一个维度 Given a tensor input, this operation insert…
1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
想要增加一维,可以使用tf.expand_dims(input, dim, name=None)函数 t = np.array(np.arange(1, 1 + 30).reshape([2, 3, 5]), dtype=np.float32) array([[[ 1., 2., 3., 4., 5.], [ 6., 7., 8., 9., 10.], [11., 12., 13., 14., 15.]], [[16., 17., 18., 19., 20.], [21., 22., 23.,…
增加一个维度 out.unsqueeze(-1) 降低一个维度 out.squeeze(dim=1)…
张量的操作主要包括张量的结构操作和张量的数学运算. 张量结构操作诸如:张量创建,索引切片,维度变换,合并分割. 张量数学运算主要有:标量运算,向量运算,矩阵运算.另外我们会介绍张量运算的广播机制. 本篇我们介绍张量的结构操作. 一,创建张量 张量创建的许多方法和numpy中创建array的方法很像. import tensorflow as tf import numpy as np a = tf.constant([1,2,3],dtype = tf.float32) tf.print(a)…
图片视图 [b, 28, 28] # 保存b张图片,28行,28列(保存数据一般行优先),图片的数据没有被破坏 [b, 28*28] # 保存b张图片,不考虑图片的行和列,只保存图片的数据,不关注图片数据的细节 [b, 2, 14*28] # 保存b张图片,把图片分为上下两个部分,两个部分具体多少行是不清楚的 [b, 28, 28, 1] # 保存b张图片,28行,28列,1个通道 First Reshape(重塑视图) import tensorflow as tf a = tf.random…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…