首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
numpy学习:数据预处理
】的更多相关文章
第一章:AI人工智能 の 数据预处理编程实战 Numpy, Pandas, Matplotlib, Scikit-Learn
本课主题 数据中 Independent 变量和 Dependent 变量 Python 数据预处理的三大神器:Numpy.Pandas.Matplotlib Scikit-Learn 的机器学习实战 数据丢失或者不完整的处理方法及编程实战 Categorical 数据的 Dummy Encoders 方法及编程实战 Fit 和 Transform 总结 数据切分之Training 和 Testing 集合实战 Feature Scaling 实战 引言 机器学习中数据预处理是一个很重要的步骤,…
Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)
理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一步!如果说原始数据的获得,是深度学习中最重要的一步,那么获得原始数据之后对它的预处理更是重要的一部分. 1.数据预处理的方法: ①数据归一化: 简单缩放:对数据的每一个维度的值进行重新调节,使其在 [0,1]或[ − 1,1] 的区间内 逐样本均值消减:在每个样本上减去数据的统计平均值,用于平稳的数…
【深度学习系列】PaddlePaddle之数据预处理
上篇文章讲了卷积神经网络的基本知识,本来这篇文章准备继续深入讲CNN的相关知识和手写CNN,但是有很多同学跟我发邮件或私信问我关于PaddlePaddle如何读取数据.做数据预处理相关的内容.网上看的很多教程都是几个常见的例子,数据集不需要自己准备,所以不需要关心,但是实际做项目的时候做数据预处理感觉一头雾水,所以我就写一篇文章汇总一下,讲讲如何用PaddlePaddle做数据预处理. PaddlePaddle的基本数据格式 根据官网的资料,总结出PaddlePaddle支持多种不同的数据格式,…
sklearn学习笔记(一)——数据预处理 sklearn.preprocessing
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
【大数据技术能力提升_2】numpy学习
numpy学习 标签(空格分隔): numpy python 数据类型 5种类型:布尔值(bool),整数(int),无符号整数(uint).浮点(float).复数(complex) 支持的原始类型与 C 中的原始类型紧密相关: Numpy 的类型 C 的类型 描述 np.bool bool 存储为字节的布尔值(True或False) np.byte signed char 平台定义 np.ubyte unsigned char 平台定义 np.short short 平台定义 np.usho…
吴裕雄 python 机器学习——数据预处理字典学习模型
from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_DictionaryLearning(): X=[[1,2,3,4,5], [6,7,8,9,10], [10,9,8,7,6,], [5,4,3,2,1]] print("before transform:",X) dct=DictionaryLearning(n_components=3) dct.…
Scikit-Learn模块学习笔记——数据预处理模块preprocessing
preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True): 将数据转化为标准正态分布(均值为0,方差为1) preprocessing.minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): 将数据…
『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dataset对象 # Select the dataset. # 'imagenet', 'train', tfr文件存储位置 # TFR文件命名格式:'voc_2012_%s_*.tfrecord',%s使用train或者test dataset = dataset_factory.get_datas…
scikit-learn模块学习笔记(数据预处理模块preprocessing)
本篇文章主要简单介绍sklearn中的数据预处理preprocessing模块,它可以对数据进行标准化.preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到pipeline 过程中. 以下内容包含了一些个人观点和理解,如有疏漏或错误,欢迎补充和指出. 数据标准化 数据标准化:当单个特征的样本取值相差甚大或明显不遵从高斯正态分布时,标准化表现的效果较差.实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中…
sklearn数据预处理-scale
对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as np 测试数据: X = np.array([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]]) 使用sklearn进行scale处理时,有两种方式可供选择. 方式1:直接使用preprocessing.scale()方法: X_scaled = preproc…