SPPNET】的更多相关文章

一.RCNN: 1.首先通过选择性搜索,对待检测的图片进行搜索出2000个候选窗口. 2.把这2k个候选窗口的图片都缩放到227*227,然后分别输入CNN中,每个候选窗台提取出一个特征向量,也就是说利用CNN进行提取特征向量. 3.把上面每个候选窗口的对应特征向量,利用SVM算法进行分类识别. 可以看到R-CNN计算量肯定很大,因为2k个候选窗口都要输入到CNN中,分别进行特征提取,计算量肯定不是一般的大. 二.SPPnet: 1.首先通过选择性搜索,对待检测的图片进行搜索出2000个候选窗口…
继续上次的学习笔记,在RCNN之后是Fast RCNN,但是在Fast RCNN之前,我们先来看一个叫做SPP-net的网络架构. 一,SPP(空间金字塔池化,Spatial Pyramid Pooling)简介: 有一个事实需要说清楚:CNN的卷积层不需要固定尺寸的图像,全连接层是需要固定大小输入的,因此提出了SPP层放到卷积层的后面.SPPNet将任意大小的图像池化生成固定长度的图像表示,如下图所示: SPP的优点:1)任意尺寸输入,固定大小输出,2)层多,3)可对任意尺度提取的特征进行池化…
前言: 接着上一篇文章提到的RCNN网络物体检测,这个网络成功的引入了CNN卷积网络来进行特征提取,但是存在一个问题,就是对需要进行特征提取图片大小有严格的限制.当时面对这种问题,rg大神采用的是对分割出的2000多个候选区域,进行切割或者缩放形变处理到固定大小,这样虽然满足了CNN对图片大小的要求,确造成图片的信息缺失或者变形,会降低图片识别的正确率. 如下图所示: 正文: 何凯明大神在看到RCNN模型,分析了CNN模型的特点后:由卷积部分和全连接两部分构成,而对于卷积部分而言,比如任意图片大…
本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivation 神经网络在计算机视觉方面的成功得益于卷积神经网络,然而,现有的许多成功的神经网络结构都要求输入为一个固定的尺寸(比如224x224,299x299),传入一张图像,需要对它做拉伸或者裁剪,再输入到网络中进行运算. 然而,裁剪可能会丢失信息,拉伸会使得图像变形,这些因素都提高了视觉任务的门槛,…
SPPNet Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 文章地址:https://arxiv.org/pdf/1406.4729.pdf 摘要 沿着上一篇RCNN的思路,我们继续探索目标检测的痛点,其中RCNN使用CNN作为特征提取器,首次使得目标检测跨入深度学习的阶段.但是RCNN对于每一个区域候选都需要首先将图片放缩到固定的尺寸(224*224),然后为每个区域候选提取CNN特征…
文章没有看完,先挑几个点谈一下. 1. 动机 在上一篇文章的末尾提到,RCNN做了很多重复计算,SPP就是为了解决这个问题而提出的的一个方法----空间金字塔池化. 感觉这个问题本质上还是全连接层对region-based目标检测算法造成的困难.全连接层要求其输入为固定尺寸,从而也就要求CNN的输入为固定尺寸,而region proposals往往大小不一.RCNN选择先在原图上截取region proposals截取下来,然后warp到要求的尺寸,再一个一个的送入CNN...,这就造成了测试时…
转载自:目标检测:SPP-net 地址https://blog.csdn.net/tinyzhao/article/details/53717136 上文说到R-CNN的最大瓶颈是2k个候选区域都要经过一次CNN,速度非常慢.Kaiming He大神最先对此作出改进,提出了SPP-net,最大的改进是只需要将原图输入一次,就可以得到每个候选区域的特征. 概述 在R-CNN中,候选区域需要进过变形缩放,以此适应CNN输入,那么能不能修改网络结构,使得任意大小的图片都能输入到CNN中呢?作者提出了s…
1. R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentation 技术路线:selective search + CNN + SVMs Step1:候选框提取(selective search) 训练:给定一张图片,利用seletive search方法从中提取出2000个候选框.由于候选框大小不一,考虑到后续CNN要求输入的图片大小统一,将2000个候选框全部resize到227*…
引言 先简单回顾一下R-CNN的问题,每张图片,通过 Selective Search 选择2000个建议框,通过变形,利用CNN提取特征,这是非常耗时的,而且,形变必然导致信息失真,最终影响模型的性能. 由此引出了一系列问题 问题1:形变耗时又损失信息,为什么要形变 很简单,因为CNN的输入必须是固定尺寸. 问题2:为什么CNN的输入必须固定尺寸 CNN主要由两部分组成,卷积层和全连接层,卷积层可以接受任意尺寸的图像,只是不同的输入卷积后的特征图尺寸不同,而全连接必须是固定的输入,所以任意尺寸…
本文是使用深度学习进行目标检测系列的第二篇,主要介绍SPP-net:Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition,即空间金字塔池化网络,用以解决卷积神经网络中固定输入大小的问题. 一.算法动机及尝试解决的问题 1. 传统的卷积神经网络的输入通常是一个固定大小(比如\(224x224\)的图像,因此当我们任意输入一张图像时需要对其进行缩放,作者认为这种手动的缩放可能会降低识别精度: 2. 在…