主成分分析PCA详解】的更多相关文章

转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现>和季海波老师的<矩阵代数>两门课之后,颇有体会.最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会. 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加…
一.简介 PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像.这时,我们通常的方法是对图像库中的图片提取响应的特征,如颜色,纹理,sift,surf,vlad等等特征,然后将其保存,建立响应的数据索引,然后对要查询的图像提取相应的特征,与数据库中的图像特征对比,找出与之最近的图片.这里,如果我们为了提…
转载地址:http://my.oschina.net/gujianhan/blog/225241 另外可以参考相关博文:http://blog.csdn.net/neal1991/article/details/46571999 一.简介 PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像.这时,我们…
原文载于此:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现>和季海波老师的<矩阵代数>两门课之后,颇有体会.最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会. 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数…
引用:https://blog.csdn.net/program_developer/article/details/80632779 将n维特征映射到k维上,只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理. PCA算法有两种实现方法:基于特征值分解协方差矩阵实现PCA算法.基于SVD分解协方差矩阵实现PCA算法. 针对第一种方案基于特征值分解协方差,步骤为: 1:对原始矩阵X进行去平均值. 2:求原始矩阵的协方差. 3:根据协方差矩阵计算特征值和对…
主成分分析(PCA, Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维处理 通过降维,可以发现更便于人类理解的特征 其他应用:数据可视化,去噪等 主成分分析是尽可能地忠实再现原始重要信息的数据降维方法 原理推导: 如图,有一个二维的数据集,其特征分布于特征1和2两个方向 现在希望对数据进行降维处理,将数据压缩到一维,直观的我们可以想到将特征一或者特征二舍弃一个,可以得到这样的结果 ------- : 舍弃特征1之后 ------- : 舍弃…
MATLAB实例:PCA(主成成分分析)详解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 主成成分分析 2. MATLAB解释 详细信息请看:Principal component analysis of raw data - mathworks [coeff,score,latent,tsquared,explained,mu] = pca(X) coeff = pca(X) returns the principal componen…
在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机器学习谈起中提到的SVM(支持向量机). 我们已经知道,车牌定位模块的输出是一些候选车牌的图片.但如何从这些候选车牌图片中甄选出真正的车牌,就是通过SVM模型判断/预测得到的.   图1 从候选车牌中选出真正的车牌 简单来说,EasyPR的车牌判断模块就是将候选车牌的图片一张张地输入到SVM模型中,…
我正在做一个开源的中文车牌识别系统,Git地址为:https://github.com/liuruoze/EasyPR. 我给它取的名字为EasyPR,也就是Easy to do Plate Recognition的意思.我开发这套系统的主要原因是因为我希望能够锻炼我在这方面的能力,包括C++技术.计算机图形学.机器学习等.我把这个项目开源的主要目的是:1.它基于开源的代码诞生,理应回归开源:2.我希望有人能够一起协助强化这套系统,包括代码.训练数据等,能够让这套系统的准确性更高,鲁棒性更强等等…
1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然这些在实际中不一定满足,但是LDA被证明是非常有效的降维方法,其线性模型对于噪音的鲁棒性效果比较好,不容易过拟合. 2 二分类问题    原理小结:对于二分类LDA问题,简单点来说,是将带有类别标签的高维样本投影到一个向量w(一维空间)上,使得在该向量上样本的投影值达到类内距离最小.类内间距离最大(…