[HNOI2011]XOR和路径】的更多相关文章

2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Status][Discuss] Description 几乎是一路看题解过来了.. 拖了一个星期的题目- - 已然不会概率DP(说得好像什么时候会过一样),高斯消元(打一次copy一遍). 发现异或题目的新解决方法:按位处理.. 发现DP新方法:高斯消元. f[k][i]代表第k位权值起点为i到终点时答案…
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i->j 权值为w,若w的k位为0,则f[i]+=1/du[i] * f[j],否则f[i]+=(1-f[j])/du[i] 注意我们现在在往回走,所以度数是i的而不是j的. 然后就可以高斯消元解出来了. 装X用模方程的lcm然后发现导致误差越来越大,WA出翔 代码: #include<cstdio&g…
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 ------------------------------------------------------------------ #include<cstdio> #include<cstring> #include<algorithm> #include<cmath>   using namespace std;   typedef long double…
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间不能异或所以不能直接求 发现每个二进制位是独立的,我们可以一位一位考虑,设当前考虑第i位 \(f[u]\)表示从u到n异或和为1的概率, \[ f[u] = \sum_{(u,v) \in E,\ w(u,v)的第i位是1} \frac{f(v)}{degree_u} \\ f[u] = \sum_…
[HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权的异或和. 特别注意,如果同一条边在路径中经过了多次,那么路径权值也要异或对应次数的边权. 请回答 这条路径的 期望权值 为多少. 数据范围:\(n \leq 100\) , \(m \leq 10^4\) .对于所有边,\(val_E \leq 10^9\). 思路及解法 A 首先,求异或问题拆成…
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1170  Solved: 683 Description Input Output Sample Input Sample Output HINT Source Day2 [分析] 这题终于自己打出来了高斯消元.没有对比代码了... 很心酸啊..调试的时候是完全没有方向的,高斯消元还要自己一步步列式子然后消元解..[为什么错都不知道有时候 这题显然是不能…
[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少(妈呀好啰嗦),设d[i]表示i的度数.然后对于某条边(a,b),如果它的权值是1,那么f[b]+=(1-f[a])/d[a]:如果它的权值是0,那么f[b]+=f[a]/d[a],然后我们移个项,就变成了一堆方程组求解,直接高斯消元. 别忘了f[n]=0! #include <cstdio> #i…
Xor F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Problem 2115. -- [Wc2011] Xor 2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 5811  Solved: 2474[Submit][Status][Discuss] Description I…
题意 题目描述 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的"XOR 和"最大.该路径可以重复经过某些节点或边,当一条边在路径中出现多次时,其权值在计算"XOR 和"时也要被重复计算相应多的次数. 直接求解上述问题比较困难,于是你决定使用非完美算法.具体来说,从 1 号节点开始,以相等的概率,随机选择与当前节点相关联的某条边,并沿这条边走到下一个节点,重复这个过程,直到…
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不满足期望的线性,所以考虑拆位. 对于每一个二进制位,经过边权为0仍是x,经过边权为1变成1-x(转化成减法才满足期望的线性). 设f[x]表示点x到n的路径xor期望,f[n]=0,根据全期望公式: $$f[i]=\sum_{j}\frac{f[j]}{out[i]}\ \ , \ \ w(i,j)=0$$…