话不多说.直接上代码咯.欢迎交流. /** * Created by whuscalaman on 1/7/16. */import org.apache.spark.{SparkConf, SparkContext}import org.apache.spark.mllib.classification.SVMWithSGDimport org.apache.spark.mllib.linalg.Vectorsimport org.apache.spark.mllib.regression.L…
不多说,直接上干货! 字段3 是分类特征字段,但是呢,在分类算法里不能直接用.所以,必须要转换为数值字段才能够被分类算法使用. 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类StumbleUpon数据集…
最近在学shell,记录一下. if语句的使用: 1.判断两个参数大小 #!/bin/sh #a test about if statement a=10 b=20 if [ $a -eq $b ];then echo "parameter a is equal to parameter b" elif [ $a -le $b ];then echo "parameter a is less than parameter b" elif [ $a -gt $b ];…
不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). ChiSqSelector用于使用卡方检验来选择特征(降维).即来特征选择. 我这里,采取手动创建.(但是,这仅仅是为了初学者.我不建议,最好用maven) 完整代码 ChiSqSelector .scala package zhouls.bigdata.DataFeatureSelection import org.apache.spa…
不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). VectorSlicer用于从原来的特征向量中切割一部分,形成新的特征向量,比如,原来的特征向量长度为10,我们希望切割其中的5~10作为新的特征向量,使用VectorSlicer可以快速实现. 理论,见 机器学习概念之特征选择(Feature selection)之VectorSlicer算法介绍 完整代码 VectorSlicer .…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异.聚类算法是机器学习(或者说是数据挖掘更合适)中重要的一部分,除了最为简单的K-Means聚类算法外,比较常见的还有层次法(CURE.CHAMELEON等).网格…
1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims to automating the task of ML pipeline construction. The optimizer solves a search problem over feature extractors and ML algorithms included inMLI and…
Mllib SVM实例 1.数据 数据格式为:标签, 特征1 特征2 特征3…… 0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202…
.NET 4 并行(多核)编程系列之一入门介绍 本系列文章将会对.NET 4中的并行编程技术(也称之为多核编程技术)以及应用作全面的介绍. 本篇文章的议题如下:  1. 并行编程和多线程编程的区别.  2. 并行编程技术的利弊  3. 何时采用并行编程 系列文章链接: .NET 4 并行(多核)编程系列之一入门介绍 .NET 4 并行(多核)编程系列之二 从Task开始 .NET 4 并行(多核)编程系列之三 从Task的取消 .NET 4 并行(多核)编程系列之四 Task的休眠 .NET 并…