论文阅读笔记: A Three-Stage Self-Training Framework for Semi-Supervised Semantic Segmentation 基本信息 \1.标题:A Three-Stage Self-Training Framework for Semi-Supervised Semantic Segmentation \2.作者:\(Rihuan Ke^{*1} , Angelica Aviles-Rivero^{*1} , Saurabh Pandey^3…
论文题目是STC,即Simple to Complex的一个框架,使用弱标签(image label)来解决密集估计(语义分割)问题. 2014年末以来,半监督的语义分割层出不穷,究其原因还是因为pixel级别的GroundTruth太难标注,因此弱监督成了人们研究的一个热门方向. 作者的核心思想是提出了层层递进的三个DCNN. 具体来讲,作者一共训练了三个网络:Initial DCNN.Enhanced DCNN和Powerful DCNN.分别解释如下: 1 . Initial DCNN:…
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society 2017, ISBN 978-1-5386-1032-9 Oral Session 1 Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Corre…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer format than this) maintained by @karpathy NEW: This year I also embedded the (1,2-gram) tfidf vectors of all papers with t-sne and placed them in an interf…
CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Going Deeper With ConvolutionsChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke…
From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am-8:40am Ballrooms A,B,C Rooms 302,304,306 Opening Remarks from Conference Chairs The opening remarks will be made from Ballrooms A,B,C, but a live vid…
学习语义分割反卷积网络DeconvNet 一点想法:反卷积网络就是基于FCN改进了上采样层,用到了反池化和反卷积操作,参数量2亿多,非常大,segnet把两个全连接层去掉,效果也能很好,显著减少了参数,只有290万,提升了性能 摘要 提出了一个创新的语义分割算法,反卷积网络.网络前几层用VGG16的结构.反卷积网络由反卷积层和反池化层组成,他们来实现像素级别的语义分割.我们把网络应用于输入图像得到每个结果,再将所有结果组合起来构成最终的语义分割图.这个方法可以降低现有的基于组合深度卷积网络和类别…
程明明(南开大学):面向开放环境的自适应视觉感知 (图片来自valse2019程明明老师ppt) 面向识别与理解的神经网络共性技术 深度神经网络通用架构 -- VggNet(ICLR'15).ResNet(CVPR'16).DenseNet(CVPR'17).DLA(CVPR'18).Res2Net()富尺度空间的深度神经网络通用架构 富尺度空间的深度神经网络通用架构 网络结构: 应用:检测任务.分类任务.分割任务 通用视觉基元属性感知 显著性物体检测技术 A Simple Pooling-Ba…
This example shows how to use Neural Network Toolbox™ to train a deep neural network to classify images of digits. Neural networks with multiple hidden layers can be useful for solving classification problems with complex data, such as images. Each l…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
Research Code A rational methodology for lossy compression - REWIC is a software-based implementation of a a rational system for progressive transmission which, in absence of a priori knowledge about regions of interest, choose at any truncation time…
以下我为这篇<Rapid Deployment of Anomaly Detection Models for Large Number of Emerging KPI Streams>做的阅读笔记 - Jeanva Abstract Rapid deployment of anomaly detection models for large number of emerging KPI streams, without manual algorithm selection, paramete…
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04-24 14:49:10 Paper:https://arxiv.org/pdf/1810.10804.pdf 在过去的许多年,大家一直认为网络结构的设计是人类的事情.但是,近些年 NAS 的发展,打破了这种观念,用自动化的方法在给定的数据上设计合适的网络结构,变的势不可挡.本文在语义分割的任务上,尝…
Weather Recognition plays an important role in our daily lives and many computer vision applications. However, recognizing the weather conditions from a single image remains challenging and has not been studied thoroughly. Generally, most previous wo…
本文译自<Deep learning for understanding faces: Machines may be just as good, or better, than humans>.为了方便,文中论文索引位置保持不变,方便直接去原文中找参考文献. 近些年深度卷积神经网络的发展将各种目标检测和识别问题大大的向前推进了不少.这同时也得益于大量的标注数据集和GPU的使用,这些方面的发展使得在无限制的图片和视频中理解人脸,自动执行诸如人脸检测,姿态估计,关键点定位和人脸识别成为了可能.本…
[原文链接] Background removal with deep learning   This post describes our work and research on the greenScreen.AI. We’ll be happy to hear thoughts and comments! Intro Throughout the last few years in machine learning, I’ve always wanted to build real ma…
Prerequisite: VGG Ref: [Object Tracking] Localization and Detection SSD Paper: http://lib.csdn.net/article/deeplearning/53059 SSD Paper: https://arxiv.org/abs/1512.02325 [Origin, Liu et al., 2015] 17 pages. 摘要: 我们提出了一种使用单个深层神经网络检测图像中对象的方法. 我们的方法,名为SS…
Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awesome-object-detection This is a list of awesome articles about object detection. R-CNN Fast R-CNN Faster R-CNN Light-Head R-CNN Cascade R-CNN SPP-Net Y…
一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论.因为这只是一篇博文,并不是论文.我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力. 局部敏感哈希,英文locality-sensetive hashing,常简称为LSH.局部敏感哈希在部分中文文献中也会被称做位置敏感哈希.LSH是一种哈希算法,最早在1998年由Indyk在[1]上提出.不同于我们在数据结构教材中对哈希算法的认识,哈希最开始是为了减少冲突方便快速增删改查,在这里LSH恰恰相…
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Workshop Track Submitted Papers Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence Mathias Berglund, Ta…
[NLG - E2E - knowledge guide generation] 1. Knowledge Diffusion for Neural Dialogue Generation ( ‎Cited by 3 ) Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu, Dawei Yin End-to-end neural dialogue generation has shown promising results re…
Back in November, we open-sourced our implementation of Mask R-CNN, and since then it’s been forked 1400 times, used in a lot of projects, and improved upon by many generous contributors. We received a lot of questions as well, so in this post I’ll e…
论文链接: https://arxiv.org/pdf/1512.02325.pdf 代码下载: https://github.com/weiliu89/caffe/tree/ssd Abstract We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of boun…
原文链接 小样本学习与智能前沿 . 在这个公众号后台回复"200706",即可获得课件电子资源. @ 目录 Abstract I. INTRODUCTION Framework. Our Method. II. RELATED WORKS A. Supervised Re-ID B. Semi-supervised Re-ID C. Unsupervised re-ID D. Progressive Learning III. THE PROPOSED METHOD A. Overal…
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning> Authors:Jiwoong Park.Minsik Lee.H. Chang.Kyuewang Lee.J. Choi Sources:2019 IEEE/CVF International Conference on Computer Vision (ICCV) Paper:Downlo…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
Ionic Framework Ionic framework is the youngest in our top 5 stack, as the alpha was released in late November 2013. Built on top of the popular AngularJS framework from Google, Ionic utilizes AngularJS to provide the application structure, while Ion…
转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers A curated list of the most cited deep learning papers (since 2010) I believe that there exist classic deep learning papers which are worth reading re…
Daniil's blog Machine Learning and Computer Vision artisan. About/ Blog/ Image Segmentation with Tensorflow using CNNs and Conditional Random Fields Tensorflow and TF-Slim | Dec 18, 2016 A post showing how to perform Image Segmentation with a recentl…