摘要:在此解决方案中把表格识别分成了四个部分:表格结构序列识别.文字检测.文字识别.单元格和文字框对齐.其中表格结构序列识别用到的模型是基于Master修改的,文字检测模型用到的是PSENet,文字识别用到的是Master模型. 本文分享自华为云社区<论文解读二十八:表格识别模型TableMaster>,作者: cver. 1. 概述 在表格识别中,模型一般先回归出单元格的坐标,然后再根据单元格的坐标得到表格的行列信息.对于有表格线的场景,模型可以比较准确地获取单元格坐标,进而可以利用单元格坐…
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留的图卷积神经网络架构(LPD-GCN)>,原文作者:PG13 . 近些年,很多研究者开发了许多基于图卷积网络的方法用于图级表示学习和分类应用.但是,当前的图卷积网络方法无法有效地保留图的局部信息,这对于图分类任务尤其严重,因为图分类目标是根据其学习的图级表示来区分不同的图结构.为了解决该问题,这篇文章提…
NLP论文解读 原创•作者 | 小欣   论文标题:PRGC: Potential Relation and Global Correspondence Based Joint Relational Triple Extraction 论文链接:https://arxiv.org/pdf/2106.09895.pdf 代码:https://github.com/hy-struggle/PRGC 1.前言 1. 论文的相关背景 关系抽取是信息抽取和知识图谱构建的关键任务之一,它的目标是从非结构化的…
CVPR2020行人重识别算法论文解读 Cross-modalityPersonre-identificationwithShared-SpecificFeatureTransfer 具有特定共享特征变换的跨模态行人重识别 摘要: 跨模态行人重识别对智能视频分析是一个难点,而又关键的技术.过去的研究主要集中在,将嵌入式不同模态放到同一个特征空间中,来训练常用的表现形式.但是,仅仅训练这些常用的特性,意味着会丢失大量的信息,降低特征显著性的上限. 本文中,通过推荐一个新的特定跨模态特征转换算法(称为c…
CVPR2020论文解读:OCR场景文本识别 ABCNet:  Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文链接:https://arxiv.org/pdf/2002.10200.pdf 摘要 场景文本的检测与识别越来越受到人们的关注.现有的方法大致可以分为两类:基于字符的方法和基于分割的方法.这些方法要么代价高昂,要么需要维护复杂的管道,这通常不适合实时应用.在这里,我们提出了自适应贝塞尔曲线网络(AB…
原创作者 | 苏菲 论文题目: Prompt-free and Efficient Language Model Fine-Tuning 论文作者: Rabeeh Karimi Mahabadi 论文地址: https://openreview.net/pdf?id=6o5ZEtqP2g 提示学习(Prompt-learning)被誉为自然语言处理的"第 4 种范式",它可以在少样本甚至零样本的条件下,通过将下游任务修改为语言生成任务来获得相对较好的模型. 但是,传统的提示学习需要针对…
原创作者 | 苏菲 论文题目: Prompt-free and Efficient Language Model Fine-Tuning 论文作者: Rabeeh Karimi Mahabadi 论文地址: https://openreview.net/pdf?id=6o5ZEtqP2g 02 PERFECT:无需Patterns和Verbalizer的微调模型 这个模型主要包含三个部分: 1)无需pattern的任务描述,使用了一个任务相关的适配器来有效告知模型相关的任务,取代了手工制作的pa…
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由: 这是一篇发表于AAAI2019的paper,文章提出了一种R-DAD的方法来对RCNN系列的目标检测方法进行改进. 研究动机: 目前主流的目标检测算法分为1 stage和2 stage的,而2 stage的目标检测方法以Fa…
首发于深度学习那些事 已关注写文章   扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 ​关注他 JustDoIT 等 188 人赞同了该文章 前言 anchor-free目标检测属于anchor-free系列的目标检测,相比于CornerNet做出了改进,使得检测速度和精度相比于one-stage和two-stage的框架都有不小的提高,尤其是与YOLOv3作比较,在相同速度的条件下,CenterNet的精度比Y…
文章来自微信公众号:机器学习炼丹术.号主炼丹兄WX:cyx645016617.文章有问题或者想交流的话欢迎- 参考目录: @ 目录 0 论文 1 概述 2 pipeline 3 技术细节 3.1 预处理 3.2 卷积网络 3.3 VGG分类网络结构 3.4 图像分割 4 遇到的问题 0 论文 论文是2018年的,发表在医学期刊<Circulation>的一篇文章<Fully Automated Echocardiogram Interpretation in Clinical Pract…