最小生成树(MST)详解+题目】的更多相关文章

在动态规划的题型中,一般叫什么DP就是怎么DP,状压DP也不例外 所谓状态压缩,一般是通过用01串表示状态,充分利用二进制数的特性,简化计算难度.举个例子,在棋盘上摆放棋子的题目中,我们可以用1表示当前位置摆放棋子,用0表示当前位置不摆放棋子. 这样的话,就能够直接运用许多二进制运算的特性来实现对时间和空间的优化 例如:如果给你一个\(n*m\)的棋盘,让你放棋子,但是棋子两两不能相邻,求方案数 我们仅考虑暴力枚举每一行的情况,如果是普通用数组来存储,判断的时候对于相邻两行需要一个数一个数的看,…
原因 回顾一下旧知识 概况 在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得的 w(T) 最小,则此 T 为 G 的最小生成树. \(\omega(t)=\sum\limits_{(u,v)\in t}{\omega (u,v)}\) 最小生成树其实是最小权重生成树的简称 思想 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出. 一.…
树形DP.这是个什么东西?为什么叫这个名字?跟其他DP有什么区别? 相信很多初学者在刚刚接触一种新思想的时候都会有这种问题. 没错,树形DP准确的说是一种DP的思想,将DP建立在树状结构的基础上. 既然说了这是一种思想,那么单讲的话,也讲不出什么东西来.所以我们结合具体题目进行讲解,希望大家可以在题目中领悟这种思想. 提到树形DP入门题,很多人都会提到没有上司的舞会这道题,的确,这道题堪称树形DP的典范,但是我个人认为,这道题的处理方式不够普遍,二叉苹果树这道题的处理方式相比之下更加普遍.下面我…
最小生成树概念: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出.最小生成树其实是最小权重生成树的简称. prim: 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小. p…
\(update:2019-9-6\) 博客里某些东西没有解释清楚,完善了对应的解释 在开始之前,我们先来看一道题--题目链接 题目要求,相邻两位的差大于等于2,那么我们先来构造一个试一试. 比如说\(15246\)这个数,我们先取第一位为\(1\),然后第二位是\(5\),\(5-1=4>2\)所以符合条件,第三位是\(2\),\(5-2=3>2\)符合条件,第四位是\(4\),\(4-2=2\)符合条件,第五位是\(6\),\(6-4=4\)符合条件,所以这个数使符合条件的. 那么问题来了…
介绍 状压dp其实就是将状态压缩成2进制来保存 其特征就是看起来有点像搜索,每个格子的状态只有1或0 ,是另一类非常典型的动态规划 举个例子:有一个大小为n*n的农田,我们可以在任意处种田,现在来描述一下某一行的某种状态: 设n = 9: 有二进制数 100011011(九位),每一位表示该农田是否被占用,1表示用了,0表示没用,这样一种状态就被我们表示出来了:见下表 位运算 为了更好的理解状压dp,首先介绍位运算相关的知识. & 符号,x&y,会将两个十进制数在二进制下进行与运算(都1为…
关于树形dp 我觉得他和线性dp差不多 总结 最近写了好多树形dp+树形结构的题目,这些题目变化多样能与多种算法结合,但还是有好多规律可以找的. 先说总的规律吧! 一般来说树形dp在设状态转移方程时都可以用f[i][]表示i这颗子树怎么怎么样的最优解,实现时一般都是用子树更新父亲(即从下向上更新), 那么首先应该考虑的是一个一个子树的更新父亲还是把所有子树都算完了再更新父亲?这就要因题而异了,一般来说有两种情况: 1.需要把所有子树的信息都掌握之后再更新子树的就需要把所有子树都算完了在更新父亲.…
介绍: 单调队列优化的原理   先回顾单调队列的概念,它有以下特征:   (1)单调队列的实现.用双端队列实现,队头和队尾都能插入和弹出.手写双端队列很简单.   (2)单调队列的单调性.队列内的元素具有单调性,从小到大,或者从大到小.   (3)单调队列的维护.每个新元素都能进入队列,它从队尾进入队列时,为维护队列的单调性,应该与队尾比较,把破坏单调性的队尾弹出.例如一个从小到大的单调队列,如果要进队的新元素a比原队尾v小,那么把v弹走,然后a继续与新的队尾比较,直到a比队尾大为止,最后a进队…
什么是字典树? 叫前缀树更容易理解 字典树的样子 Trie又被称为前缀树.字典树,所以当然是一棵树.上面这棵Trie树包含的字符串集合是{in, inn, int, tea, ten, to}.每个节点的编号是我们为了描述方便加上去的.比如上图中3号节点对应的路径0123上的字符串是inn,8号节点对应的路径0568上的字符串是ten.终结点与集合中的字符串是一一对应的. Trie树的性质 根节点不包含字符,除根节点外每一个节点都只包含一个字符 从根节点到某一节点,路径上经过的字符连接起来,为该…
目录 RHCE脚本题目详解 题目一 shell脚本之if语句实现: shell脚本之case语句实现: 题目二 实现 测试 解析 写在后面 RHCE脚本题目详解 题目一 在system1上创建一个名为 /root/foo.sh 的脚本,让其提供下列特性: 当运行 /root/foo.sh redhat ,输出为 fedora 当运行 /root/foo.sh fedora ,输出为 redhat 当没有任何参数或者参数不是 redhat 或者 fedora 时,其错误输出产生以下的信息: /ro…