【性能优化】(2)JVM调优】的更多相关文章

原文:https://blog.csdn.net/wd2014610/article/details/82182617 项目调优作为一名工程师,项目调优这事,是必须得熟练掌握的事情. 在SpringBoot项目中,调优主要通过配置文件和配置JVM的参数的方式进行. 在这边有一篇比较好的文章,推荐给大家! SpringBoot项目配置Tomcat和JVM参数 一.修改配置文件关于修改配置文件application.properties. SpringBoot项目详细的配置文件修改文档 其中比较重要…
项目调优 作为一名工程师,项目调优这事,是必须得熟练掌握的事情. 在SpringBoot项目中,调优主要通过配置文件和配置JVM的参数的方式进行. 在这边有一篇比较好的文章,推荐给大家! SpringBoot项目配置Tomcat和JVM参数 一.修改配置文件 关于修改配置文件application.properties. SpringBoot项目详细的配置文件修改文档 其中比较重要的有: server.tomcat.max-connections=0 # Maximum number of co…
https://www.cnblogs.com/jpfss/p/9753215.html 项目调优 作为一名工程师,项目调优这事,是必须得熟练掌握的事情. 在SpringBoot项目中,调优主要通过配置文件和配置JVM的参数的方式进行. 在这边有一篇比较好的文章,推荐给大家! SpringBoot项目配置Tomcat和JVM参数 一.修改配置文件 关于修改配置文件application.properties. SpringBoot项目详细的配置文件修改文档 其中比较重要的有: server.to…
  在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资…
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资源使…
MySQL对于很多Linux从业者而言,是一个非常棘手的问题,多数情况都是因为对数据库出现问题的情况和处理思路不清晰.在进行MySQL的优化之前必须要了解的就是MySQL的查询过程,很多的查询优化工作实际上就是遵循一些原则让MySQL的优化器能够按照预想的合理方式运行而已. 今天我们特别邀请了资深的Linux运维老司机惨绿少年Linux来给大家体验MySQL的优化实战,助你高薪之路顺畅. 图 - MySQL查询过程 1.2 优化的哲学 优化有风险,涉足需谨慎 1.2.1 优化可能带来的问题 优化…
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资源使…
一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.数据倾斜只会发生在shuffle过程中.常用的并且可能会触发shuffle操作的算子:distinct.groupByKey.reduceByKey.aggregateByKey.join.cogroup.repartition等. 表现:Spark作业看起来会运行得非常…
调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优.但是也必须提醒大家的是,影响一个Spark作业性能的因素,主要还是代码开发.资源参数以及数据倾斜,shuffle调优只能在整个Spark的性能调优中占到一小部分而已.因此大家务必把握住调优的基本原则,千万不要舍本逐末.下面我们就给大家详细讲解shuffle的原理,以及相关参数的说明,同时给出各…
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资源使…