记$m=10$,即商品的种类 记$g(x)=1+\sum_{i=1}^{m}a_{i}x_{i}$,问题即求$f_{n}(x)=g^{n}(x)$非0项数(模2意义下) 注意到$f^{2}(x)\equiv f(x^{2})(mod\ 2)$,这是因为如果所选的项在两边不同,那么交换后即会抵消 令$F(n,A)$为$A(x)f_{n}(x)$非0项数,即有$\begin{cases}F(n+1,A)=F(n,A\cdot g)\\F(2n,A)=F(n,E)+F(n,O)\end{cases}$…