Dataparallel 和 DataparallelDistributed 的区别 一.Dataparallel(DP) 1.1 Dartaparallel 的使用方式 Dataparallel 的使用方式比较简单,只需要一句话即可: net = nn.Dataparallel(net, device_ids, output_device) 其中,net 就是自己定义的网络实例,device_ids就是需要使用的显卡列表,output_device 表示参数输出结果的设备,默认情况下 outp…
这篇博客是在pytorch中基于apex使用混合精度加速的一个偏工程的描述,原理层面的解释并不是这篇博客的目的,不过在参考部分提供了非常有价值的资料,可以进一步研究. 一个关键原则:“仅仅在权重更新的时候使用fp32,耗时的前向和后向运算都使用fp16”.其中的一个技巧是:在反向计算开始前,将dloss乘上一个scale,人为变大:权重更新前,除去scale,恢复正常值.目的是为了减小激活gradient下溢出的风险. apex是nvidia的一个pytorch扩展,用于支持混合精度训练和分布式…
Pytorch指定GPU的方法 改变系统变量 改变系统环境变量仅使目标显卡,编辑 .bashrc文件,添加系统变量 export CUDA_VISIBLE_DEVICES=0 #这里是要使用的GPU编号 在程序开头设置 os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3' 在运行程序时指定 # 运行程序时使用命令行,来设置该程序可见的gpu: CUDA_VISIBLE_DEVICES=0,1,2,3 python xxx.py 使用torch.c…
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在.所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推崇的: def weight_init(m): # 使用isinstance来判断m属于什么类型 if…
通过StartDT AI Lab专栏之前多篇文章叙述,相信大家已经对计算机视觉技术及人工智能算法在奇点云AIOT战略中的支撑作用有了很好的理解.同样,这种业务牵引,技术覆盖的模式也收获了市场的良好反响,而奇点云AIOT在市场的大面积铺开又给算法部门带来了新的挑战,也就是如何进一步的降低算法端计算成本,从而提升业务利润. 目标很简单,就是将现有算法模型在不降低准确性的前提下,缩小模型尺寸以节省硬件存储成本,简化模型计算复杂度,以节省硬件计算成本.这又小又快的模型优化要求,我们一般统称为模型加速问题…
使用Pytorch搭建模型的步骤及教程 我们知道,模型有一个特定的生命周期,了解这个为数据集建模和理解 PyTorch API 提供了指导方向.我们可以根据生命周期的每一个步骤进行设计和优化,同时更加方便调整各种细节. 模型的生命周期的五个步骤如下: 1.准备数据 2.定义模型 3.训练模型 4.评估模型 5.进行预测 注意:使用 PyTorch API 有很多方法可以实现这些步骤中的每一个,下面是一些使用Pytorch API最简单.最常见或最惯用的方法. 一.准备数据 第一步是加载和准备数据…
在国外的服务器上因为受各种因素影响,即使国外的服务器都是百兆共享或者G口到国内下载速度都不是很让人满意,大部分人购买国外服务器是用作存储下载或者扶墙,速度慢的所以话影响我们的使用体验.所以就搞出了很多加速的方法,本文以Linux为例,总结一下现有的加速方法,同时提供一个新事物–BBR加速器. 一.Kvm/Xen/Vmware/独立服务器的加速 1.锐速 ServerSpeeder KVM这些加速比较容易,他们可以使用锐速来优化网络.锐速是一种单边加速器,加速TCP来实现速度的提升,他和后文提到的…
go依赖包下载加速方法及github加速 对于https://github.com/kubernetes/kubernetes整个仓库大小为近900M,下载起来那个伤心: 方法一:使用码云 这是码云上的的说明:此仓库是为了提升国内下载速度的镜像仓库,每日同步一次 先从码云下载到本地,然后修改./git/config为github的仓库地址,再次git pull拉取最新的commit,这样 就和github保持一致 方法二:github加速 https://www.ipaddress.com 国内…
1.使用场景 假设我们有训练好的模型A,B,C,我们希望使用A,B,C中的部分或者全部变量,合成为一个模型D,用于初始化或其他目的,就需要融合多个模型的方法 2.如何实现 我们可以先声明模型D,再创建多个Saver实例,分别从模型A,B,C的保存文件(checkpoint文件)中读取所需的变量值,来达成这一目的,下面是示例代码: 首先创建一个只包含w1,w2两个变量的模型,初始化后保存: def train_model1(): w1 = tf.get_variable("w1", sh…
在数据分析中经常会对不同的模型做判断 一.混淆矩阵法 作用:一种比较简单的模型验证方法,可算出不同模型的预测精度 将模型的预测值与实际值组合成一个矩阵,正例一般是我们要预测的目标.真正例就是预测为正例且实际也是正例(预测正确):假反例是实际是正例但模型错误预测成反例(即预测错误):假正例是预测是模型预测是正例,但实际是反例:真反例是预测是反例,实际也是反例. 查准率=真正例/假正例+真正例(真正率占我们预测是正例的比例) 查全率=真正例/真正例+假反例(真正率占我们实际是正例的比例) 混淆矩阵运…