题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这样的话我们只要对L/G进行质因数分解,找出最接近√(L/G)的因子p,最终结果就是a=p*G,b=L/p,对(L/G)就是套用Miller–Rabin和Pollard's rho了,刚开始Pollard's rho用的函数也是 f(x)=x^2+1,然后死循环了....改成f(x)=x^2+c(c<…