深度学习优化器 深度学习中的优化器均采用了梯度下降的方式进行优化,所谓炼丹我觉得优化器可以当作灶,它控制着火量的大小.形式与时间等. 初级的优化器 首先我们来一下看最初级的灶台(100 - 1000 元) Batch Gradient Descent (BGD) 名字叫做批梯度下降,实际上每次迭代会使用全部的数据来更新梯度(应该是取所有数据的平均梯度),具体公式如下: \[\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta) \] 伪代码如…
模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism.Attention Mechanism目前非常流行,广泛应用于机器翻译.语音识别.图像标注(Image Caption)…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
作者:严健文 | 旷视 MegEngine 架构师 背景 在数字信号和数字图像领域, 对频域的研究是一个重要分支. 我们日常"加工"的图像都是像素级,被称为是图像的空域数据.空域数据表征我们"可读"的细节.如果我们将同一张图像视为信号,进行频谱分析,可以得到图像的频域数据. 观察下面这组图 (来源),频域图中的亮点为低频信号,代表图像的大部分能量,也就是图像的主体信息.暗点为高频信号,代表图像的边缘和噪声.从组图可以看出,Degraded Goofy 与 Goofy…
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 对于每一层网络得到输出向…
转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 GPU 学习深度学习>系列文章的第二篇,主要介绍了 Tensorflow 的原理,以及如何用最简单的Python代码进行功能实现.本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主. 往期内容: 使用腾讯云 GPU 学习深度学习系列之一:传统机器学…
1. 线性回归 回归(regression)问题指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系. 机器学习领域中多数问题都与预测相关,当我们想预测一个数值时,就会涉及到回归问题,如预测房价等.(预测不仅包含回归问题,还包含分类问题) 线性回归(Linear Regression),自变量 $\textbf x$ 与因变量 $y$ 之间的关系是线性的,即 $y$ 可以表示为 $\textbf x$ 中元素的加权和. 我们用 $n$ 来表示数据集中的样本数,对索…
NVIDIA TensorRT高性能深度学习推理 NVIDIA TensorRT 是用于高性能深度学习推理的 SDK.此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高吞吐量. 在推理过程中,基于 TensorRT 的应用程序的执行速度可比 CPU 平台的速度快 40 倍.借助 TensorRT,您可以优化在所有主要框架中训练的神经网络模型,精确校正低精度,并最终将模型部署到超大规模数据中心.嵌入式或汽车产品平台中. TensorRT 以 NVIDIA 的并行编程…
本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan Vasist,为我们讲解 DJL(完全由 Java 构建的深度学习平台)系列的第 4 篇. 一.前言 很长时间以来,Java 都是一个很受企业欢迎的编程语言.得益于丰富的生态以及完善维护的包和框架,Java 拥有着庞大的开发者社区.尽管深度学习应用的不断演进和落地,提供给 Java 开发者的框架和库却十分短缺.…
课程目标 完成本课程的学习后,您应该能够: •优化器的作用 •优化器的类型 •优化器的优化步骤 •扫描的基本类型 •表连接的执行计划 •其他运算方式的执行计划 •如何看执行计划顺序 •如何获取执行计划   1.优化器概述 oracle中优化器(optimizer)是SQL分析和执行的优化工具,它负责制订SQL的执行计划,也就是负责保证SQL执行的效率最高.优化器的类型:基于规则的优化器(RBO,Rule-Based Optimizer)基于成本的优化器(CBO,Cost-Based Optimi…