混合高斯模型和EM算法】的更多相关文章

这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值…
<统计学习方法>这本书上写的太抽象,可参考这位大神的:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html…
使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,-,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值高斯分布…
一.极大似然已经发生的事件是独立重复事件,符合同一分布已经发生的时间是可能性(似然)的事件利用这两个假设,已经发生时间的联合密度值就最大,所以就可以求出总体分布f中参数θ 用极大似然进行机器学习有监督学习:最大熵模型无监督学习:GMM 二.熵和信息自信息i(x) = -log(p(x)) 信息是对不确定性的度量.概率是对确定性的度量,概率越大,越确定,可能性越大.信息越大,越不确定. 熵是对平均不确定性的度量.熵是随机变量不确定性的度量,不确定性越大,熵值越大.H(x) = -∑p(x)log⁡…
高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mathbf x\ | \ \mathbf \mu_k, \mathbf \Sigma_k) \] 引入一个\(K\)维的二值随机变量\(\mathbf z\), 采用"\(1\)-of-\(K\)"编码,其中一个特定的元素\(z_k\)等于\(1\),其余所有的元素都等于\(0\). 于是\(…
讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期望最大化算法EM.概率分布要确定里边的参数有两种手段,即据估计.最大似然估计. 高斯混合模型简介: 高斯分布也叫正态分布,在机器学习的一些书和论文里边,一般把它称为高斯分布,尤其是老外习惯这样写. 高斯混合模型是多个高斯分布的一个叠加,它的概率密度函数可以写成: 其中x肯定是一个连续性的随机变量,一…
今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> 所有代码例如以下! def NDimensionGaussian(X_vector,U_Mean,CovarianceMatrix): #X…
第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对…
似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p(HH | pH = 0.5) = 0.5*0.5 = 0.25. 这种写法其实有点误导,后面的这个p其实是作为参数存在的,而不是一个随机变量,因此不能算作是条件概率,更靠谱的写法应该是 p(HH;p=0.5). 而似然概率正好与这个过程相反,我们关注的量不再是事件的发生概率,而是已知发生了某些事件,…
一.高斯混合模型概述 1.公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重.Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为: 高斯混合模型就是K个高斯分布的线性组合,它假设所有的样本可以分为K类,每一类的样本服从一个高斯分布,那么高斯混合模型的学习过程就是去估计K个高斯分布的概率密度Ø(y|θk),以及每个高斯分布的权重αk.每个观测样本出现的概率就表示为K个高斯分布概率的加…