【转】Root检测与反检测】的更多相关文章

0x00背景需要在手机上构建一个环境对root过的设备进行伪装,让设备里面的应用将该设备当成未root的设备.10x01 Root检测手段1.检查已安装的APK包:SuperSU应用程序或者一键root的程序:(例如One Click Root,iRoot,360一键root,kingroot)Root Apps:需要root权限才能使用其功能的应用程序.例如busybox,SetCPU,Titanium Backup.Root Cloakers:隐藏设备是否已植根的应用程序.例如Root Cl…
接着上一篇文章说 因为代码简短且思路简单 所以我就把这几个功能汇总为一篇文章 因为我之前就是做游戏外挂的 经过验证核实,**飞车的复位点检测.圈数检测就是以下的方法实现的 至于反向检测和赛道长度计算,没去深入研究,不过应该也八九不离十 在告诉大家个小秘密: **飞车的复位点检测和圈数检测利用以下文章中的代码思路可以做出外挂 感兴趣的可以试试!我只是技术交流,不是传播外挂,别打我 复位点检测优化: 首先感谢 @太粗难进 他的原话: “不过 你知道 高架桥么?就是 如果大的轮船经过 会 把 桥 中间…
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ORB BRISK KAZE AKAZE MESR GFTT good feature to tack Bob斑点 STAR AGAST 接下来分别讲述这是一种图像特征检测算法,但是首先,需要了解OPENCV的一种数据结构, KeyPoint结构,该结构的头文件定义如下: class KeyPoi…
1. 异常检测简介 异常检测,它的任务是发现与大部分其他对象不同的对象,我们称为异常对象.异常检测算法已经广泛应用于电信.互联网和信用卡的诈骗检测.贷款审批.电子商务.网络入侵和天气预报等领域.这些异常对象的主要成因有:来源于不同的模式.自然变异.数据测量以及随机误差等.而常见的异常检测算法都是针对独立的数据点进行异常检测,此时异常检测又称为离群点检测.而在序列数据的异常检测过程中,我们既可以直接使用对序列进行异常检测的算法,也可以先对序列数据进行特征提取然后转化为传统的离群点检测. 2. 基本…
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异常值定义为与其余数据群1不一致的样本或事件.异常值通常包含有关影响数据生成过程2的系统和实体的异常特征的有用信息. 异常检测算法的常见应用包括: 入侵检测系统信用卡诈骗有趣的传感器事件医学诊断在本文中,我们将重点介绍异常检测 - 信用卡欺诈的最常见应用之一.通过一些简单的离群值检测方法,可以在真实世…
客户端检测一共分为三种,分别为:能力检测.怪癖检测和用户代理检测,通过这三种检测方案,我们可以充分的了解当前浏览器所处系统.所支持的语法.所具有的特殊性能. 一.能力检测: 能力检测又称作为特性检测,检测的目标不是识别特定的浏览器,而是识别浏览器的能力. 能力检测不必估计特定的浏览器,只需要确定当前的浏览器是否支持特定的能力,就可以给出可行的解决方案. var width = window.innerWidth; //如果是非 IE 浏览器 if (typeof width != 'number…
眼球追踪需要对人脸进行识别,然后再对人眼进行识别,判断人眼张合度,进而判断疲劳... 解析:人脸检测的harr检测函数使用方法 代码理解: 利用训练集,检测出脸部,画出框 void CAviTestDlg::HaarFaceDetect( IplImage* TheImage, CvBox2D* faceBox) { if( !cascade ) { return ; } storage = cvCreateMemStorage(0); int scale = 1; int i; IplImag…
24V低压检测电路 - 低压检测电压 参考: ADC采样工作原理详解 使用单片机的ADC采集电阻的分压 问题: 当ADC采集两个电阻分压后的电压的时候,ADC转换出来的电压值和万用表量出来的不一样差异还挺大,但只要在采集点和GND之间跨接一个小电容(比如0.1uf)就解决问题了.这是啥原理? N1: 分压电阻的输出阻抗太高:ADC的采样时间太短. N2: MCU的ADC,输入首先是一个采样电路,等效一个电子开关.串联电阻.采样保持的负载电容.在采样时间内,外部信号源,信号源内阻,采样电阻内阻,对…
目标检测之单步检测(Single Shot detectors) 前言 像RCNN,fast RCNN,faster RCNN,这类检测方法都需要先通过一些方法得到候选区域,然后对这些候选区使用高质量的分类器进行分类.这类方法的检测准确率比较高但是计算开销非常大,不利于实时检测和嵌入式等设备. 另一类方法是将提取候选区和进行分类这两个任务融合到一个网络中.既不使用预定义的box也不使用候选区生成网络来进行寻找目标物体.而是通过一些的卷积核来对卷积网络得到的特征来计算类别分数和位置偏差. 利用卷积…
摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection>,该论文针对目标检测任务,提出了新的高斯检测框(GBB),及新的计算目标相似性的方法(ProbIoU). 本文分享自华为云社区<论文解读系列十九:用于目标检测的高斯检测框与ProbIoU>,作者:BigDragon. 论文地址: https://arxiv.org/abs/2106.06072…