LOJ 看到离线区间操作仍然考虑莫队,然后可以发现:我们对于原来的凸包集合按照极角序维护一个链表,那么删除一个位置可以\(O(1)\),撤回删除操作也可以\(O(1)\)(因为原来的链表结构中当前节点就记录着其之前的前驱后继),但是动态加入操作至少要一个二分的\(log\)的复杂度.所以我们要尽可能避免动态加入. 因为没学过回滚莫队所以我的写法比较奇怪:设\(solve(l,r)\)表示正在解决左端点在块\(l\)内.右端点在块\(r\)内的询问,并且此时已经维护出块\(l\)左端点到块\(r\…
题面 传送门 题解 因为并不强制在线,我们可以考虑莫队 然而莫队的时候有个问题,删除很简单,除去它和前驱后继的贡献即可.但是插入的话却要找到前驱后继再插入,非常麻烦 那么我们把它变成只删除的回滚莫队就好了 不知道回滚莫队的可以看看这里 //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define inline __attribute__((always_inline)) #define fp…
Loj #6503. 「雅礼集训 2018 Day4」Magic 题目描述 前进!前进!不择手段地前进!--托马斯 · 维德 魔法纪元元年. 1453 年 5 月 3 日 16 时,高维碎片接触地球. 1453 年 5 月 28 日 21 时,碎片完全离开地球. 1453 年,君士坦丁堡被围城,迪奥娜拉接触到四维泡沫空间,成为魔法师,最终因高维碎片消失失去魔力而身死. 为了改写这段历史,你不惜耗费你珍藏已久的魔术卡来回到魔法纪元元年. 在使用这些魔术卡之前,你却对它们的排列起了兴趣... 桌面上…
传送门 Description  「搞 OI 不如种田.」 小 D 在家种了一棵二叉树,第 ii 个结点的权值为 \(a_i\). 小 D 为自己种的树买了肥料,每天给树施肥. 可是几天后,小 D 却发现树上有几个结点枯死了,他这才发现,自己买的肥料是二叉搜索树专用版. 二叉搜索树是一种二叉树,满足每个结点的权值大于左子树内所有点的权值,小于右子树内所有点的权值. 二叉搜索树专用版肥料是这么工作的:首先,假设所有节点权值互不相同(小 D 的二叉树可能不满足),每种权值对应一种肥料,所有肥料会从根…
目录 description solution accepted code details description 你将向敌方发起进攻!敌方的防御阵地可以用一个 \(N\times M\) 的 \(01\) 矩阵表示,标为 \(1\) 的表示有效区域,标为 \(0\) 的是敌人的预警装置. 你将发起 \(K\) 轮进攻,每一轮从所有 \(\frac{NM(N+1)(M+1)}{4}\) 种可能中选定一个矩形区域对其进行轰炸.如果 \(K\) 轮后存在一个有效区域每次都被轰炸到,并且没有一次触发敌…
题目描述 Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右买不到.展览中总共有 N 种珠宝,每种珠宝都只有一个,对于第 i种珠宝,它的售价为 Ci​ 万元,对 Miranda 的吸引力为 Vi​.Miranda 总共可以从银行中取出 K 万元,现在她想知道,假如她最终带了 i 万元去展览会,她能买到的珠宝对她的吸引力最大可以是多少? 题解 菜死了菜死了..…
神仙题 LOJ #6509 题意 给定一棵树,点权为0/1,每次随机一个点(可能和之前所在点相同)走到该点并将其点权异或上1 求期望的移动距离使得所有点点权相同 题解 根本不会解方程 容易发现如果一个点不是最后一次被走到,就会随机下一个点并走过去 即如果我们能求出每个点非最后一次走到的期望次数,就可以算出答案 由于完全随机,初始相同颜色的点非最后一次走到的次数相同 设$ f_{i,0/1}$表示在有$ i$个1的时候,0/1非最后一次走到的期望次数 很艰难的列出方程如下 $$ f_{i,0} =…
填坑填坑.. 感谢wwt耐心讲解啊.. 如果要看这篇题解建议从上往下读不要跳哦.. 30pts 把$A$和$C$看成$n$个$n$维向量,那$A_i$是否加入到$C_j$中就可以用$B_{i,j}$表示了 枚举矩阵$A$,求出它的秩$r$,如果$C$在$A$的线性空间内则$C$可以被$A$表示出来 那么$B$矩阵的方案数就是$(2^{n-r})^n$ 这时候我们可以发现,由于枚举$A$覆盖了所有情况,秩相同的$C$的答案都是一样的 然后就可以打表算答案了.. 60pts 如果不想看可以跳过这段…
题意 题目链接 分析 注意到本题的 \(C\) 很小,考虑定义一个和 \(C\) 有关的状态. 记 \(f(x,j)\) 表示考虑到了价格为 \(x\) 的物品,一共花费了 \(j\) 元的最大收益.将价格为 \(x\) 的物品按照收益从大到小排序,记这个数组为 \(w\) ,不难发现我们选择的一定是 \(w\) 的一段前缀的形式. 将所有的 \(j\) 按照模 \(x\) 的余数分类,容易得到: \(f(x,i)=\max\limits_{j\%x=i\%x}\{f(x-1,j)+w(\fra…
题意 \(n\) 张卡牌 \(m\) 种颜色,询问有多少种本质不同的序列满足相邻颜色相同的位置数量等于 \(k\). 分析 首先本质不同不好直接处理,可以将同种颜色的卡牌看作是不相同的,求出答案后除以 \(\prod {a_i!}\) 即可. 如果我们能够得到一个至少存在 \(k\) 个魔术对的排列数,就可以容斥了. 考虑单独处理每种颜色, 枚举一个颜色 \(i\),计算这种颜色至少有 \(j\) 对的方案总数. 可以选择 \(j\) 张牌保证这些牌一定跟在某张牌的后面,这样就可以形成 \(\g…