题目链接 http://codeforces.com/contest/1264/problem/C 题解 吐槽:为什么我赛后看cf的题就经常1h内做出Div.1 C, 一打cf就动不动AB题不会啊--zblzbl 首先显然断点把序列分成几部分,总答案就等于所有部分的答案之和.考虑如何求一部分内的答案.首先有个非常经典的dp是\(f_i\)表示期望多少次从\(i\)走到\(i+1\), 但是按此方法并不能(至少我不会)导出一个方便维护修改的做法. 这时可以转换思路,考虑另一种DP,设\(f_i\)…
一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\) 表示第 \(i\) 个格子期望经过多少次,所以 \(dp_{n+1}=1\). https://www.cnblogs.com/suncongbo/p/11996219.html…
1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Discuss] Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. Input 一行输入两个数R,B,其值在0到5000之间 Output 在最优策略下平均能得到多少钱…
题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T<100) ,表示游戏的局数. 每局游戏仅占一行,包含四个非负整数 K, A, B 和 C ,表示克苏恩的攻击力是 K ,你有 A 个 1 点血量的奴隶 主, B 个 2 点血量的奴隶主, C 个 3 点血量的奴隶主. 保证 K 是小于 50 的正数, A+B+C 不超过 7 . 输出 对于每局游戏…
题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数,四舍五入保留三位小数. 样例输入 10 样例输出 4.168 题解 概率期望dp 显然任何时刻栈中的元素自底至顶一定是若干个0+若干个1. 但是如果设状态$p[i][j][k]$表示前$i$次操作,栈中$j$个0,$k$个1的概率,复杂度是$O(n^3)$的,显然会TLE. 注意到$0$的个数对状态…
题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾添加字母b,当出现≥k个ab子串时立即停止添加字母,求最后期望的ab子串个数.(子串ab不要求连续) 例子:当k=1,aab含2个ab,bbabbab时不可能出现的,因为到了bbab就会停止添加字母. 题解: 期望DP DP果然是智商的分界线 orz @.@#,这题题意其实我也没看太懂,后来看了别人…
对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \(1*n\) 的格子上掷色子,从 \(0\) 点出发,掷了多少前进几步,同时有些格点直接相连,即若 \(a\) ,\(b\) 相连,当落到 \(a\) 点时直接飞向 \(b\) 点.求走到 \(n\) 或超出 \(n\) 期望掷色子次数 \(n \leq 100000\) Solution 这道题目有…
方法一:倒推,最常规的期望DP.f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define rep(i,l,r) for (int i=l; i<=r; i++) typedef long long ll; using namespace…
题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 \times N\) grid. Each cell of the cave can contain any amount of gold. Initially you are in position \(1\). Now each turn you throw a perfect \(6\) s…
Description 题库链接 一共有 \(n\) 个关卡,你初始在第一个关卡.通过第 \(i\) 个关卡的概率为 \(p_i\).每一轮你可以挑战一个关卡.若通过第 \(i\) 个关卡,则进入第 \(i+1\) 个关卡,否则重新回到第 \(1\) 个关卡.通过第 \(n\) 个关卡则算成功.问期望多少轮游戏才能成功. \(1\leq n\leq 2\cdot 10^5\) Solution 设从第 \(i\) 个关卡通关的期望为 \(E_i\).显然 \[ E_i=p_i(E_{i+1}+1…