上两篇说了决策树到集成学习的大概,这节我们通过adaboost来具体了解一下集成学习的简单做法. 集成学习有bagging和boosting两种不同的思路,bagging的代表是随机森林,boosting比较基础的adaboost,高级一点有GBDT,在这里我也说下我理解的这两个做法的核心区别: 随机森林的bagging是采用有放回抽样得到n个训练集,每个训练集都会有重复的样本,每个训练集数据都一样,然后对每个训练集生成一个决策树,这样生成的每个决策树都是利用了整个样本集的一部分,也就说每棵决策…