tf.trainable_variable() 此函数返回的是需要训练的变量列表 tf.all_variable() 此函数返回的是所有变量列表 v = tf.Variable(tf.constant(0.0, shape=[1], dtype=tf.float32), name='v') v1 = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='v1') global_step = tf.Variable(tf.co…
tf.name_scope() 此函数作用是共享变量.在一个作用域scope内共享一些变量,简单来说,就是给变量名前面加个变量空间名,只限于tf.Variable()的变量 tf.variable_scope() 和tf.name_scope()作用一样,不过包括tf.get_variable()的变量和tf.Variable()的变量 在同一个程序中多次调用,在第一次调用之后需要将reuse参数设置为True with tf.variable_scope("one"): a = tf…
tf.Variable(<initial - value>,name=<optional - name>) 此函数用于定义图变量.生成一个初始值为initial - value的变量. tf.get_variable(name,shape,dtype,initializer,trainable) 此函数用于定义图变量.获取已经存在的变量,如果不存在,就新建一个 参数: name:名称 shape:数据形状. dtype:数据类型.常用的tf.float32,tf.float64等数…
tf.global_variables_initializer() 此函数是初始化模型的参数 with tf.Session() as sess: tf.global_variables_initializer().run() 当我们训练自己的神经网络的时候,无一例外的就是都会加上这一句 tf.global_variables_initializer().run() 或者 sess.run(tf.global_variables_initializer())…
tf.argmax(input, dimension, name=None) 参数: input:输入数据 dimension:按某维度查找. dimension=0:按列查找: dimension=1:按行查找: 返回: 最大值的下标 a = tf.constant([1.,2.,3.,0.,9.,]) b = tf.constant([[1,2,3],[3,2,1],[4,5,6],[6,5,4]]) with tf.Session() as sess: sess.run(tf.argmax…
tf.add_to_collection(name, value) 此函数将元素添加到列表中 参数: name:列表名.如果不存在,创建一个新的列表 value:元素 tf.get_collection(name) 此函数获取列表 参数: name:列表名 tf.add_n(inputs) 此函数将元素相加并返回 注意:元素类型必须一致,否者报错 tf.add_to_collection('losses', regularizer(weights)) tf.add_n(tf.get_collec…
tf.control_dependencies(control_inputs) 此函数指定某些操作执行的依赖关系 返回一个控制依赖的上下文管理器,使用 with 关键字可以让在这个上下文环境中的操作都在 control_inputs 执行 with tf.control_dependencies([a, b]): c = .... d = ... 在执行完 a,b 操作之后,才能执行 c,d 操作.意思就是 c,d 操作依赖 a,b 操作 with tf.control_dependencies…
tf.placeholder(dtype, shape=None, name=None) 此函数用于定义过程,在执行的时候再赋具体的值 参数: dtype:数据类型.常用的是tf.float32,tf.float64等数值类型 shape:数据形状.默认是None,就是一维值,也可以多维,比如:[None,3],表示列是3,行不一定 name:名称. 返回: Tensor类型 赋值一般用sess.run(feed_dict = {x:xs, y_:ys}),其中x,y_是用placeholder…
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.4 #占用40%显存 sess = tf.Session(config=config) 1. 记录设备指派情况 :  tf.Conf…
链接如下: http://stackoverflow.com/questions/41791469/difference-between-tf-session-and-tf-interactivesession 英文 Question: Questions says everything, for taking sess= tf.Session() and sess=tf.InteractiveSession() which cases should be considered for what…