ML——决策树模型】的更多相关文章

决策树模型 优点:高效简单.易于理解,可以处理不相关特征. 缺点:容易过拟合,训练集在特征上是完备的 决策树过程:特征选择.划分数据集.构建决策树.决策树剪枝 决策树选择最优的划分特征,将数据集按照最优划分特征的取值划分成不同的子集,然后依次对子集重复上述步骤,指导子集中数据都归属于同一个类别,或者没有特征可以再划分了. 特征选择通常有三种方法: ID3——信息信息 C4.5——信息增益比 CART——基尼指数 一.信息增益 首先信息论中熵表示随机变量不确定性度量,熵越大,不确定性越大. 熵的定…
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解.一般而言一棵“完全生长”的决策树包含,特征选择.决策树构建.剪枝三个过程,这篇文章主要是简单梳理比较ID3.C4.5.CART算法.<统计学习方法>中有比较详细的介绍. 一…
(1)C4.5算法的特点为: 输入变量(自变量):为分类型变量或连续型变量. 输出变量(目标变量):为分类型变量. 连续变量处理:N等分离散化. 树分枝类型:多分枝. 分裂指标:信息增益比率gain ratio(分裂后的目标变量取值变异较小,纯度高) 前剪枝:叶节点数是否小于某一阈值. 后剪枝:使用置信度法和减少-误差法. (2)CART算法的特点为: 输入变量(自变量):为分类型变量或连续型变量. 输出变量(目标变量):为分类型变量(或连续型:回归分析) 连续变量处理:N等分离散化. 树分枝类…
单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型,然后通过投票的方式,以少数服从多数的原则做出最终的分类决策.随机选取特征.GBDT:按照一定次序搭建多个分类模型,模型之间存在依赖关系,一般,每一个后续加入的模型都需要对集成模型的综合性能有所贡献,最终期望整合多个弱分类器,搭建出具有更强分类能力的模型. #coding=utf8 # 导入panda…
How do decision trees for regression work? 决策树模型既可以求解分类问题(对应的就是 classification tree),也即对应的目标值是类别型数据,也可以应用于回归预测问题的求解(regression tree),其输出值则可以是连续的实数值.一般市面上介绍决策树模型的书及相关的教学视频,通常只关注决策树在分类问题上的求解,而一笔带过对回归树的介绍.事实上,二者的构建过程也确实没有本质的不同,二者的差异主要集中在划分属性时的划分原则上. 1.…
一.任务基础 导入所需要的库 import matplotlib.pyplot as plt import pandas as pd %matplotlib inline 加载sklearn内置数据集 ,查看数据描述 from sklearn.datasets.california_housing import fetch_california_housing housing = fetch_california_housing() print(housing.DESCR) 数据集包含房价价格以…
版本说明 Python version: 3.6.6 |Anaconda, Inc.| (default, Jun 28 2018, 11:21:07) [MSC v.1900 32 bit (Intel)] NumPy version:1.17.4 pandas version:0.25.3 scikit-learn version:0.19.0 graphviz version:0.13.2 scipy version:1.3.3 matplotlib version:3.1.2 IPyth…
data(churn)导入自带的训练集churnTrain和测试集churnTest 用id3.cart.C4.5和C5.0创建决策树模型,并用交叉矩阵评估模型,针对churn数据,哪种模型更合适 决策树模型 ID3/C4.5/CART算法比较 传送门 data(churn)为R自带的训练集,这个data(chun十分特殊) 先对data(churn)训练集和测试集进行数据查询 churnTest数据 奇怪之处,不能存储它的数据,不能查看数据的维度 ,不能查看数据框中每个变量的属性!! > da…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def load_data(): ''' 加载用于分类问题的数据集.数据集采用 scikit-…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def creat_data(n): np.random.seed(0) X = 5 * np…