洛谷 P1445 [Violet]樱花】的更多相关文章

洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: 输入一个整数N 输出格式: 输出答案 输入输出样例 输入样例#1: 1439 输出样例#1: 102426508 Solution 极其恶心的一道题... 看到这种题肯定是需要化简式子的,因为出题人不会好到给你一个好做的式子 \[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!…
洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x​+1/(n!+k)​=1/n!​ 等式两边同乘x*n!*(n!+k)得 n!(n!+k)+xn!=x(n!+k) 移项得 n!(n!+k)=x(n!+k)−xn!=xk x=n!(n!+k)​/k=(n!)2​/k+n! 因为x为正整数 所以(n!)2​/k+n!为正整数0. 因为n!为正整数 所以只要(n!)2​/k为正…
#include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; #define fi first #define se second #define mp make_pair #define pb push_back typedef long long ll; typedef unsigned long long ull; typedef…
BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{n!}\] 通分:\[\dfrac{x + y}{xy} = \dfrac{1}{n!}\] 十字相乘:\[(x + y) \times n! = xy\] 把\((x + y) \times n!\)移到右项:\[xy - (x + y) \times n! = 0\] 两边同时加上\((n!…
P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax+tx$ $x=a^{2}/t+a$ $x=(n!)^{2}/t+n!$ 再根据唯一分解定理 $(n!)^{2}=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 将$(n!)^{2}$分解质因数一下 最后乘法原理套上去 end.…
Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac{xy}{x+y}=n!$$ $$xy=n!(x+y)$$ $$-n!(x+y)+xy=0$$ $$(n!x+n!y)-xy=0$$ $$(n!)^2+(n!x+n!y)-xy=(n!)^2$$ $$(x-n!)(y-n!)=(n!)^2$$ 所以$(x-n!)$就是$(n!)^2$的一个因子. 又…
做了题还是忍不住要写一发题解,感觉楼下的不易懂啊. 本题解使用latex纯手写精心打造. 题意:求\(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\)的正整数解总数. 首先,不会线筛素数的先去做下LuoguP3383. 开始推导. \[\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\] 那么\(\frac{1}{x}\)和\(\frac{1}{y}\)肯定是小于\(\frac{1}{n!}\)的.所以\(x\)和\(y\)肯定都是大于\(n!…
题意:求 1/x + 1/y = 1/(n!)的正整数解个数. 解:神仙...... 设(n!) = t 打表发现 x ∈ [t+1 , 2t] 反正就是拿到式子以后乱搞一通然后发现得到了这个很美观的东西: (y - t)(x - t) = t2 然后下一步SB的我居然没想出来... 换元得:ab = t2 a ∈ [1 , t] 然后对t分解质因数即可...约数个数用乘法原理.分解质因数之后+1乘起来即可. #include <cstdio> typedef long long LL; ;…
P4169 [Violet]天使玩偶/SJY摆棋子 题目描述 \(Ayu\)在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,\(Ayu\) 却忘了她把天使玩偶埋在了哪里,所以她决定仅凭一点模糊的记忆来寻找它. 我们把 \(Ayu\) 生活的小镇看作一个二维平面坐标系,而 \(Ayu\) 会不定时地记起可能在某个点 \((x,y)\) 埋下了天使玩偶:或者 \(Ayu\) 会询问你,假如她在 \((x,y)\) ,那么她离近的天使玩偶可能埋下的地方有多远. 因为…
P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被它杀掉了.我觉得把那么可怕的怪物召唤出来的那个坏蛋也很坏呢.不过奶奶说他是很难受的时候才做出这样的事的-- 最近村子里长出了一大片一大片的蒲公英.一刮风,这些蒲公英就能飘到好远的地方了呢.我觉得要是它们能飘到那个城市里面,让哥哥看看就好了呢! 哥哥你要快点回来哦! 爱你的妹妹 Violet…