3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = 3x\) 不就是 \(x\oplus (x<<1) = (x<<1)+x\) 吗 异或是不进位的二进制加法,那么,没有相邻的1 然后第一问数位DP就很好搞了 第二问,n个数中选i个不能相邻,\(\sum\limits \binom{n+1-i}{i}\) 太大了没法算了, DP一下试试…
传送门 题意 现有如下方程:$ x \oplus 3x = 2x $ 其中 $ \oplus $ 表示按位异或. 共 $ T $ 组数据,每组数据给定正整数 $ n $,任务如下: 求出小于等于 $ n $ 的正整数中,有多少个数是该方程的解 求出小于等于 $ 2^n $ 的正整数中,有多少个数是该方程的解,输出 $ mod $ $ 10^9+7 $ 的值. $ (n \leq 10^{18}, T \leq 1000) $ 题解 第一问 方程 $ x \oplus 3x = 2x $ 等价于…
显然当x中没有相邻的1时该式成立,看起来这也是必要的. 于是对于第一问,数位dp即可.第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { ,f=;…
Clarke and digits 问题描述 克拉克是一名人格分裂患者.某一天,克拉克变成了一个研究人员,在研究数字. 他想知道在所有长度在[l,r]之间的能被7整除且相邻数位之和不为k的正整数有多少个. 输入描述 第一行一个整数T(1≤T≤5),表示数据的组数. 每组数据只有一行三个整数l,r,k(1≤l≤r≤109,0≤k≤18) 输出描述 每组数据输出一行一个数,表示答案.由于答案太大,你只需对10^9+7取模即可. 输入样例 2 1 2 5 2 3 5 输出样例 13 125 Hint…
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少种项链. 分析:这是我做过的最为综合的一道题目(太渣了),首先数位dp筛选出区间[L,R]内的幸运数字总数,dp[pos]表示非限制条件下还有pos位含有的幸运数字个数,然后记忆化搜索一下,随便乱搞的(直接dfs不知会不会超时,本人做法900+ms险过,应该直接dfs会超时),再不考虑旋转相同的情况,可以…
Solution 发现 $x \ xor \  2x = 3x$ 仅当 $x$ 的二进制中没有相邻的 $1$ 对于第一个问题就可以进行数位DP 了. 但是对于第二个问题, 我们只能通过递推 打表 来算出答案了. 推公式 打表 可知, 这是一个斐波那契数列, $a_0 = 1, a_1 = 2, a_2 = 3$.... 通过矩阵快速幂优化递推就可以过啦 Code #include<cstdio> #include<cstring> #include<algorithm>…
手动博客搬家: 本文发表于20181105 23:18:54, 原地址https://blog.csdn.net/suncongbo/article/details/83758728 题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3329 思路分析: 这道题完全是两道题拼在了一起.. 我们首先观察一下这个等式: 我们不妨可以把它移项变成\(x\ xor\ (2x)=3x\) 然后我们发现,\(3x=x+2x\), 也就是\(x\ xo…
题意 题目链接 Sol 挺套路的一道题 首先把式子移一下项 \(x \oplus 2x = 3x\) 有一件显然的事情:\(a \oplus b \leqslant c\) 又因为\(a \oplus b + 2(a \& b) = c\) 那么\(x \& 2x = 0\) 也就是说,\(x\)的二进制表示下不能有相邻位 第一问直接数位dp即可 第二问比较interesting,设\(f[i]\)表示二进制为\(i\)的方案数,转移时考虑上一位选不选 如果能选,方案数为\(f[i - 2…
传送门 好题啊. 我只会写l,rl,rl,r都很小的情况(然而题上并没有这种数据范围). 但这个dp转移式子可以借鉴. 我们用f[i][j][k]f[i][j][k]f[i][j][k]表示当前在第i位,模7余j,当前位是k. 显然有f[i+1][([j∗10+l)f[i+1][([j*10+l)f[i+1][([j∗10+l)%7][l]+=f[i][j][k]7][l]+=f[i][j][k]7][l]+=f[i][j][k]. 但是i上限1e91e91e9,直接做会凉. 于是我们构造矩阵来…
标题效果:特定n,乞讨[1,n]内[1,2^n]差多少x满足x^3x=2x x^3x=2x相当于x^2x = 3x 和3x=x+2x 和2x=x<<1 因此x满足条件IFFx&(x<<1)=0 故x的二进制拆分中随意两个1不相邻 令f[i]为i位数中最高位为0的满足条件的数的数量 g[i]为i位数中最高位为1的满足条件的数的数量 则显然有 f[i+1]=f[i]+g[i] g[i+1]=f[i] 于是第一问数位DP 第二问矩阵乘法就可以 #include <cstdi…
题目链接 x^3x=2x -> x^2x=3x 因为a^b+((a&b)<<1)=a+b,x^2x=x+2x,所以x和2x的二进制表示中不存在相邻的1. (或者,因为x+2x=3x,所以x^2x没有抵消任何的1,所以x和2x没有相邻的1) 那么第一问数位DP,第二问上界为\(2^n\),按位DP就行了. \(f[i]\)表示到第\(i\)位的方案数.每位要么填\(0\)要么填\(1\),所以\(f[i]=f[i-1]+f[i-2]\).就是斐波那契数列(从斐波那契表示法也能看出与…
传送门 解题思路 可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\).那么第一问就是一个简单的数位\(dp\),第二问考虑递推按位做,设\(f(i)\)表示最后一位为\(0\)的答案,\(g(i)\)表示最后一位为\(1\)的答案,那么\(f(i)=g(i-1)+f(i-1)\),\(g(i)=f(i-1)\),整理一下发现\(f(i)=f(i-1)+f(i-2)\),就是斐波那契的形式,直接矩乘即可. 代码 #in…
递推式很明显...但是要做矩阵乘法就得拆点..我一开始很脑残地对于每一条权值v>1的边都新建v-1个节点去转移...然后就TLE了...把每个点拆成9个就可以了...时间复杂度O((9N)^3*logT) -------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>  …
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n.给定n,k,p,求满足要求的方案数%30031.n<=10^9,k<=p<=10. [算法]状压DP+矩阵快速幂 [题解]开始没看到p<=10,其实很显然p>k的话第一车就不满足要求了.考虑相邻停靠点没有关键信息,只能状压. 因为车都是从头开到尾的,所以直接考虑i~i-p+1的…
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法]AC自动机+DP+矩阵快速幂 [题解]其实题意的数据范围不太清晰,反正开200个点就足够了. 因为要匹配禁忌串,所以对禁忌串集合建立AC自动机,标记禁忌串结尾节点,以及下传到所有能fail到的点(这些点访问到都相当于匹配了禁忌串). 令f[i][j]表示匹配到节点i,长度为j的串的数量,先预处理a[i][j…
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant string: among all the substrings of an elegant string, none of them is a permutation of "0, 1,…, k". Let function(n, k) be the number of elegant s…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: 108  Time Limit: 10000/5000 MS (Java/Others)  Memory Limit: 65536/65536 K (Java/Others) 问题描述 小明很喜欢国际象棋,尤其喜欢国际象棋里面的大象(只要无阻挡能够斜着走任意格),但是他觉得国际象棋里的大象太凶残了…
BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻的0).例如,000,001 ,101,都是交错序列,而110则不是.对于一个长度为n的交错序列,统计其中0和1出现的次数,分别记为x和y. 给定参数a.b,定义一个交错序列的特征值为x^ay^b.注意这里规定任何整数的0次幂都等于1(包括0^0=1). 显然长度为n的交错序列可能有多个.我们想要知道,所有长…
题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分析: dp+矩阵快速幂. 假如现在的数是m,模x余数是n,那么再从下一个block中选一个数a,a模x余数为b,那么新的数的余数就为(m∗10+a)%x,也就是(n∗10+b)%x,所以实际上我们只需要直接对余数进行操作.容易得到状态转移方程,其中dp[i][j]表示从第i个block中选择一个数后…
题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y-1)或者(x+1,y)或者(x+1,y+1)三个位子之一. 现在一共有N段线段,每条线段都是平行于X轴的.我们如果此时x是在这段线段之内的话,我们此时走到的点(x,y)需要满足0<=y<=Ci. 现在保证一段线段的终点,一定是下一段线段的起点.问我们从起点走到终点的行走方案数. 题解:简单的dp+…
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2-Am有M位,不出现是指X1X2-Xn中没有恰好一段等于A1A2-Am. A1和X1可以为0 \(0 \leq X_i \leq 9,0\leq Ai\leq 9,m \leq 20,n \leq 10^9\) 分析 先考虑暴力的思路,设\(dp[i][j]\)表示前i位数与不吉利数字匹配了前…
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j)表示dp(x-1, j)对dp(x, i)的贡献.然后用矩阵快速幂就可以了. 时间复杂度O(M3logN + M) ------------------------------------------------------------------- #include<bits/stdc++.h>…
这道到是不用看题解,不过太经典了,早就被剧透一脸了 这道题很像ac自动机上的dp(其实就是) 然后注意到n很大,节点很小,于是就可以用矩阵快速幂优化了 时间复杂度为o(m^3 *log n); 蒟蒻kpm写得少,改了好久= = CODE: #include<cstdio>#include<iostream>#include<cstring>#include<algorithm>using namespace std;int n,m,mod;#define m…
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #define MAXN 140 #define MOD 30031 using namespace std; struct Matrix { int num[MAXN]…
注意到周期234的lcm只有12,也就是以12为周期,可以走的状态是一样的 所以先预处理出这12个状态的转移矩阵,乘起来,然后矩阵快速幂优化转移k/12次,然后剩下的次数暴力转移即可 #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int mod=10000; int n,m,s,t,k,x,y,nf,T,w[60]; struct jz { int a[6…
矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式,然后按每一位分别矩阵快速幂即可 矩阵: f[i-1] w[i] 1 1 f[i] i-1 0 1 1 = i 1 0 0 1 1 #include<iostream> #include<cstdio> using namespace std; long long n,mod,t; lo…
题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s的前j个字符一致的情况下)的方法数 若匹配到s串长度为i的后缀加一个字符num可以组成最长长度为j的后缀,设a[i][j]为num的方法数 例如,s为12312,a为 9 1 0 0 0 08 1 1 0 0 08 1 0 1 0 09 0 0 0 1 08 1 0 0 0 1 (i,j都是从0到m-1) 如…
题面描述 阿申准备报名参加\(GT\)考试,准考证号为\(N\)位数\(x_1,x_2,...,x_n\ (0\leq x_i\leq 9)\),他不希望准考证号上出现不吉利的数字. 他的不吉利数字\(a_1,a_2,...,a_m\ (0\leq a_i\leq 9)\)有\(M\)位,不出现是指\(x_1,x_2,...,x_n\)中没有恰好一段等于\(a_1,a_2,...,a_m\). \(a_1\)和\(x_1\)可以为\(0\) 输入格式 第一行输入\(N,M,K\).接下来一行输入…
由于方块最多涉及3行,于是考虑将每两行状压起来,dfs搜索每种状态之间的转移. 这样一共有2^12种状态,显然进行矩阵快速幂优化时会超时,便考虑减少状态. 进行两遍bfs,分别为初始状态可以到达的状态,和可以到达终止状态的状态. 同时出现在两次bfs中的状态即为有效状态,一共有141种. 这样就可以跑出来了. 未加矩阵快速幂 50分 ..,..] of longint= ((-,,),(-,,),(,,),(,,),(-,,),(-,,),(,,),(-,,)); dy:..,..] of lo…
Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties,…