[.NET网格计算框架] Alchemi】的更多相关文章

  Alchemi [.NET网格计算框架] 是 一个以使用简易为目的的Windows下的网格计算框架.它提供了:a)开发网格软件的编程环境 和 b)建造网格和运行网格软件的运行机制.       Alchemi提供了软件合成的弹性.你可以使用强劲的网格线型模式以任何.NET支援的语言写网格软件. 或者把现有的软件以编程或宣布的方式改成网格软件. 建造同一水平网格(捆绑群)只要在一台电脑上安装Alchemi Manager和在每一台网格电脑上安装Alchemi Executor. 这一弹性的模式…
本项目是使用scala语言给出了spark2.4.5计算框架中各模块的常用实例. 温馨提醒:spark的版本与scala的版本号有严格的对应关系,安装请注意. Spark Core RDD以及Pair RDD的常用算子 Spark SQL RDD转换为DataFrame DataFrame与MySQL的交互 Spark MLlib 流水线pipeline的基本用法 决策树 K均值 K-means 逻辑回归 LogisticRegression 超参优化 网格搜索 Spark Streaming…
Storm分布式实时流计算框架相关技术总结 Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍.以此为基础,后续再深入了解Storm的内部实现细节. 1. Zookeeper集群 Zookeeper是一个针对大型分布式系统的可靠协调服务系统,其采用类似Unix文件系统树形层次结构的数据模型(如:/zoo/a,/zoo/b),节点内可存储少量数据(<1M,当节点存储大数据量时,实际应用中可能出现同步问题). Zookeep…
随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在Spark上的实时计算框架,通过它提供的丰富的API.基于内存的高速执行引擎,用户可以结合流式.批处理和交互试查询应用.本文将详细介绍Spark Streaming实时计算框架的原理与特点.适用场景. Spark Streaming实时计算框架 Spark是一个类似于MapReduce的分布式计算框…
storm分布式流式计算框架. nimbus:主进程服务(职责就是任务的分配的,程序的分发) supervisor:工作进程服务(职责就是启动线程池,接受任务,运行任务,报告任务的运行状态) 注意容错:supervisor与nimbus都是基于zookeeper来实现容错,任务运行的元数据存储的zk里面,如果工作节点宕机,zk可以发现,执行触发机制,通知nimbus,对任务进行重新的分发. =====================================================…
GraphLab介绍 GraphLab 是由CMU(卡内基梅隆大学)的Select 实验室在2010 年提出的一个基于图像处理模型的开源图计算框架.框架使用C++语言开发实现. 该框架是面向机器学习(ML)的流处理并行计算框架,可以运行在多处理机的单机系统.集群或是亚马逊的EC2 等多种环境下.框架的设计目标是,像MapReduce一样高度抽象.可以高效运行与机器学习相关的.具有稀疏的计算依赖特性的迭代性算法,并且保证计算过程中数据的高度一致性和高效的并行计算性能.该框架最初是为处理大规模机器学…
转自:https://www.cnblogs.com/reed/p/7730338.html 今天做题,其中一道是 请简要描述一下Hadoop, Spark, MPI三种计算框架的特点以及分别适用于什么样的场景. 一直想对这些大数据计算框架总结一下,只可惜太懒,一直拖着.今天就借这个机会好好学习一下. 一张表 名称 发起者 语言 简介 特点 适用场景 Hadoop Yahoo工程师,Apache基金会 Java MapReduce分布式计算框架+HDFS分布式文件系统(GFS)+HBase数据存…
GridP  是   Grid Protocol   的 全称  . 我在 <关于软件产业的两个契机>  https://www.cnblogs.com/KSongKing/p/9531950.html     中提到: 云计算是第一代互联网发展到成熟的标志 . 网格计算是第二代互联网的开始 . 我在 <Grid Virtual Server 和 网格计算>  https://www.cnblogs.com/KSongKing/p/9486434.html    中提到: 网格计算…
摘要: 通过前面的学习,大家已经了解了HDFS文件系统.有了数据,下一步就要分析计算这些数据,产生价值.接下来我们介绍Mapreduce计算框架,学习数据是怎样被利用的. 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 内容包括hadoop入门.hadoop生态架构以及大型hadoop商业实战案例. 讲的很细致, MapReduce 就讲了 15 个小时. 学完后可以胜任 hadoop 的开发工作,很多人学的这个课程找到的工作. (包括指导书.练习代码.和…
Grid Virtual Server 的 Virtual Server 源于 LVS (Linux Virtual Server) , LVS 的意思就是把 多个 Linux 服务器 联合起来构成一个 虚拟的服务器 , 也就是 集群 . 那么这里的 Grid 是 怎么回事 呢 ? 集群 可以 算是 中心化 的 方式 . 中心化的方式始终存在一个问题 , 就是 “瓶颈”  . 瓶颈 包含 2 层 含义 , 一是 性能 , 二是 故障转移 . 性能瓶颈 好理解, 故障转移瓶颈 又是什么呢 ? 故障…
Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码   本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运行源码 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上节课主要从事务视角为大家探索Spark Streaming架构机制:Spark Streaming程序分成而部分,一部分是Driver,另外一部分是Executor.通过对Driver和…
Kafka Stream-Spark Streaming-Storm流式计算框架比较选型 elasticsearch-head Elasticsearch-sql client NLPchina/elasticsearch-sql: Use SQL to query Elasticsearch kafka stream vs spark streaming vs storm_百度搜索 [翻译]Kafka Streams简介: 让流处理变得更简单 - devos - 博客园 kafka strea…
首发于我的gitpages博客 https://helenawang.github.io/2018/10/10/代码相似度计算框架调研 代码相似度计算框架调研 研究现状 代码相似度计算是一个已有40年研究历史的问题了.它的应用范围广泛,主要包括代码抄袭检测[3].软件维护中的相似代码查找等. Whale[1]于1988年首次提出一个代码相似性检测的通用框架和步骤,将检测过程分为以下两个阶段: 代码格式转换 + 相似度确定 后来很多检测方法都参考这一框架,并将检测过程细分为四个部分: 预处理 ->…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用.(实时计算?) Storm集群架构 Storm集群采用主从架构方式,主节点是Nimbus,从节点是Supervisor,有关调度相关的信息存储到ZooKeeper集群中,架构如下图所示 Nimbus:Storm集群的Master…
一.1.0版本 主要由两部分组成:编程模型和运行时环境. 编程模型为用户提供易用的编程接口,用户只需编写串行程序实现函数来实现一个分布式程序,其他如节点间的通信.节点失效,数据切分等,则由运行时环境完成. 基本编程模型将问题抽象成Map和Reduce两个阶段,Map阶段将输入数据解析成key/value,迭代调用map()函数后,再以key/value的形式输出到本地目录:Reduce阶段则将key相同的value进行归约处理,并将最终结果写入到HDFS. 运行时环境由JobTracker和Ta…
+BIT祝威+悄悄在此留下版了个权的信息说: [译]为任意网格计算tangent空间的基向量 Computing Tangent Space Basis Vectors for an Arbitrary Mesh (Lengyel’s Method) Modern bump mapping (also known as normal mapping) requires that tangent plane basis vectors be calculated for each vertex i…
腾讯开源再次迎来重磅项目,14日,腾讯正式宣布开源高性能图计算框架Plato,这是在短短一周之内,开源的第五个重大项目. 相对于目前全球范围内其它的图计算框架,Plato可满足十亿级节点的超大规模图计算需求,将算法计算时间从天级缩短到分钟级,性能全面领先领先于其它主流分布式图计算框架,并且打破了原本动辄需要数百台服务器的资源瓶颈,现在,最少只需要十台服务器即可完成计算. 腾讯Plato团队负责人于东海表示:"Plato已经支持腾讯内部包括微信在内的众多核心业务,尤其是为腾讯超大规模社交网络图数据…
二.计算向数据移动如何实现? Hadoop1.x(已经淘汰): hdfs暴露数据的位置 1)资源管理 2)任务调度 角色:JobTracker&TaskTracker JobTracker: 资源管理.任务调度(主) TaskTracker:任务管理.资源汇报(从) Client: 1.会根据每次计算数据,咨询NN的元数据(block).算:split 得到一个切片的清单 map的数量就有了 2.split是逻辑的,block是物理的,block身上有(offset,locatios),spli…
目录 1. 正文 2. 目录 3. 参考 4. 相关 1. 正文 HTCondor是威斯康星大学麦迪逊分校构建的分布式计算软件和相关技术,用来处理高通量计算(High Throughput Computing )的相关问题.高通量计算中的Throughput应该是吞吐量的意思,也就是调度计算机资源的能力.与高性能计算(HPC)不同,高通量计算(HTC)应对的问题是在高性能的同时能够长时间稳定运行的能力,并充分利用集群或网络内计算资源.长时间计算时,集群或网络内计算资源往往是不可靠的,这中间蕴含了…
1. 简介 是一个分布式, 高容错的 实时计算框架 Storm进程常驻内存, 永久运行 Storm数据不经过磁盘, 在内存中流转, 通过网络直接发送给下游 流式处理(streaming) 与 批处理(batch) 批处理(batch): MapReduce 微批处理(MircroBatch): Spark (性能上近似 Streaming, 但是还是有所不及) 流(streaming): Storm, Flink(其实Flink也可以做批处理) Storm MapReduce 流式处理 批处理…
一.Flink概述 1.基础简介 Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算.Flink被设计在所有常见的集群环境中运行,以内存执行速度和任意规模来执行计算.主要特性包括:批流一体化.精密的状态管理.事件时间支持以及精确一次的状态一致性保障等.Flink不仅可以运行在包括YARN.Mesos.Kubernetes在内的多种资源管理框架上,还支持在裸机集群上独立部署.在启用高可用选项的情况下,它不存在单点失效问题. 这里要说明两个概念: 边界:无边界和有边界数据流,…
目录 1 - 什么是 MapReduce 2 - MapReduce 的设计思想 2.1 如何海量数据:分而治之 2.2 方便开发使用:隐藏系统层细节 2.3 构建抽象模型:Map 和 Reduce 3 - MapReduce 的优劣 3.1 MapReduce 的优势 3.2 MapReduce 的限制 参考资料 版权声明 1 - 什么是 MapReduce 维基百科中,MapReduce 是 Google 提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算. MapReduce 是…
@ 目录 概述 定义 发展历史 发行版本 优势 生态项目 架构 组成模块 HDFS架构 YARN架构 部署 部署规划 前置条件 部署步骤 下载文件(三台都执行) 创建目录(三台都执行) 配置环境变量(三台都执行) 安装和配置(hadoop1上执行) 启动和停止Hadoop HDFS环境测试 计算和资源环境测试 概述 定义 Hadoop 官网地址 https://hadoop.apache.org/ Hadoop GitHub地址 https://github.com/apache/hadoop…
本期内容 : Spark Streaming+Spark SQL案例展示 基于案例贯穿Spark Streaming的运行源码 一. 案例代码阐述 : 在线动态计算电商中不同类别中最热门的商品排名,例如:手机类别中最热门的三种手机.电视类别中最热门的三种电视等. 1.案例运行代码 : import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveCont…
1 spark streaming 程序代码实例 代码如下: object OnlineTheTop3ItemForEachCategory2DB { def main(args: Array[String]){ val conf = new SparkConf() //创建SparkConf对象 //设置应用程序的名称,在程序运行的监控界面可以看到名称 conf.setAppName("OnlineTheTop3ItemForEachCategory2DB") conf.setMas…
本章节内容: 一.在线动态计算分类最热门商品案例回顾 二.基于案例贯通Spark Streaming的运行源码 先看代码(源码场景:用户.用户的商品.商品的点击量排名,按商品.其点击量排名前三): package com.dt.spark.sparkstreaming import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveContext impo…
Flink对于流处理架构的意义十分重要,Kafka让消息具有了持久化的能力,而处理数据,甚至穿越时间的能力都要靠Flink来完成. 在Streaming-大数据的未来一文中我们知道,对于流式处理最重要的两件事,正确性,时间推理工具.而Flink对两者都有非常好的支持. Flink对于正确性的保证 对于连续的事件流数据,由于我们处理时可能有事件暂未到达,可能导致数据的正确性受到影响,现在采取的普遍做法的通过高延迟的离线计算保证正确性,但是也牺牲了低延迟. Flink的正确性体现在计算窗口的定义符合…
​KubeEdge成为第一个Kubernetes原生边缘计算平台,Edge和云组件现已开源! 开源边缘计算正在经历其业界最具活力的发展阶段.如此多的开源平台,如此多的整合以及如此多的标准化举措!这显示了构建更好平台的强大动力,以便将云计算带到边缘以满足不断增长的需求.去年宣布的KubeEdge现在为云原生计算带来了好消息!它提供了基于Kubernetes的完整边缘计算解决方案,具有独立的云和边缘核心模块.目前,云端和边缘模块都是开源的. 与可用的某些轻量级kubernetes平台不同,KubeE…
一. 1.对比:离线计算和实时计算 离线计算:MapReduce,批量处理(Sqoop-->HDFS--> MR ---> HDFS) 实时计算:Storm和Spark Sparking,数据实时性(Flume ---> Kafka ---> 流式计算 ---> Redis) 2.常见的实时计算(流式计算)代表 (1)Apache Storm (2)Spark Streaming (3)Apache Flink:既可以流式计算,也可以离线计算 二.Storm的体系结构…
Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作.Caffe是纯粹的C++/CUDA架构,支持命令行.Python和MATLAB接口:可以在CPU和GPU直接无缝切换: Caffe::set_mode(Caffe::GPU); Caffe的优势 上手快:模型与相应优化都是以文本形式而非代码形式给出. Caffe给出了模型的定义.最优化设置以及预训练的权重,方便…