The human visual system is one of the wonders of the world. Consider the following sequence of handwritten digits: Most people effortlessly recognize those digits as 504192. That ease is deceptive. In each hemisphere of our brain, humans have a prima…
http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb50ZcKor41PEikwv5TfTqwrsQ4-9wmH06L7bYD04u 用BP人工神经网络识别手写数字 yzw20091201上传于2013-01-31|暂无评价|356人阅读|13次下载|暂无简介|举报文档    在手机打开   赖勇浩(   http://laiyonghao.com…
Chapter1 使用神经网络辨识手写数字 人类的视觉系统是自然界的一大奇迹.试看如下的手写数列: 绝大多数人都能毫不费劲地认出这些数字是504192,而这会让人产生识别数字非常简单的错觉.人类大脑的每个半球都有初级视觉皮层,其中一个可以被记作V1,包含有1亿4千万的神经元以及它们之间数以百亿计的相互连接.何况人类的视觉系统不仅只有V1,而还包括其他所有的初级视觉皮层:V2,V3,V4和V5,逐步负责着不同复杂程度的图像处理.我们的大脑里有一台超级计算机,经过数亿年的进化,能够极好地适应理解视觉…
一.介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务. 除此之外,还对卷积神经网络的卷积核.特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的工作原理. 知识点 使用 PyTorch 数据集三件套的方法 卷积神经网络的搭建与训练 可视化卷积核.特征图的方法 二.数据准备 引入相关包 import torch import torch.nn as nn from torch.autograd import Variable import t…
本文将用Numpy实现简单BP神经网络完成对手写数字图片的识别,数据集为42000张带标签的28x28像素手写数字图像.在计算机完成对手写数字图片的识别过程中,代表图片的28x28=764个像素的特征数据值将会被作为神经网络的输入,经过网络的正向传播,得到可以粗略作为0~9每个数字的概率的输出(输出层第一个神经元节点的输出看成是图片数字是0的概率,其余9个神经元节点以此类推),取概率最大的数字即为识别结果.神经网络的输出神经元节点有10个,假设待识别数字为1,就可以定义label为[0,1,0,…
import numpy as np import tensorflow as tf import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm from tensorflow.examples.tutorials.mnist import input_data # 训练的准确度目标 accuracyGoal = 0.98 # 是否已经达到指定的准确度 bFlagGoal = False; # 显示数字…
from PIL import Image import numpy as np import tensorflow as tf import time bShowAccuracy = True # 加载手写图片 def loadHandWritingImage(strFilePath): im = Image.open(strFilePath, 'r') ndarrayImg = np.array(im.convert("L"), dtype='float') return ndar…
two important types of artificial neuron :the perceptron and the sigmoid neuron Perceptrons 感知机的输入个数不限,每个输入的取值都是二元的(0或1,这点不确定,后续确认下),输出是0或1. Sigmoid neuron Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weight…
功能: 将文件夹下的20*20像素黑白图片,根据重心位置绘制到28*28图片上,然后保存.经过预处理的图片有利于数字的准确识别.参见MNIST对图片的要求. 此处可下载已处理好的图片: https://files.cnblogs.com/files/hatemath/20-pixel-numbers.zip https://files.cnblogs.com/files/hatemath/28-pixel-numbers.zip # encoding: utf-8 import os from…
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说…