为了了解,上来先看几篇中文博客进行简单了解: 如何理解Nvidia英伟达的Multi-GPU多卡通信框架NCCL?(较为优秀的文章) 使用NCCL进行NVIDIA GPU卡之间的通信(GPU卡通信模式测试) nvidia-nccl 学习笔记 (主要是一些接口介绍) https://developer.nvidia.com/nccl (官方网站) https://github.com/NVIDIA/nccl (官方仓库) https://www.cnblogs.com/xuyaowen/p/het…
基于英伟达Jetson TX1 GPU的HDMI图像输入的深度学习套件 [309] 本平台基于英伟达的Jetson TX1视觉计算的全功能开发板,配合本公司研发的HDMI输入图像采集板:Jetson TX1集合64位ARM A57 CPU与1 TFLOP/s 256核Maxwell GPU处理器,并具备4 GB LPDDR4 | 25.6 GB/s内存,16 GB eMMC存储:HDMI采集板使用Micro HDMI接口作为输入接口,并通过芯片TC358840XBG完成从HDMI到MIPI CS…
英伟达GPU  嵌入式开发平台 1.         JETSON TX1 开发者组件 JETSON TX1 开发者组件是视觉计算的全功能 开发平台,旨在让您能够快速地安装和运行. 该组件带有 Linux 操作系统环境的存储,支持许多常见的 API,支持由 NVIDIA 完成的开发工具链.主板还设有诸多标准硬件接口,使其成为了高度灵活和可扩展的平台.这让它十分适合那些需要极高计算性能和极低功耗的应用. 2.         Jetson TX1模块 Jetson TX1 是全球首款模块化超级计算…
本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上. 而 GPU 的选择,会在根本上决定你的深度学习体验.那么,对于一名 DL 开发者,应该怎么选择合适的 GPU 呢?这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能.性价比制成一目了然的对比图,供大家参考. 先来谈谈选择 GPU 对…
此文基于全新的License 2.0系统,针对vGPU License的试用申请以及软件下载和License管理进行了详细的说明,方便今后我们申请测试License,快速验证GPU的功能. 试用步骤: ·      Evaluation License 申请 ·      vGPU 软件下载 ·      License  Server软件下载 ·      部署License Server ·      注册License Server MAC地址, 添加license ·      注册客户…
命令: nvidia-smi 结果:…
DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learning开发工具,实现深度神经网络(Deep Neural Network,DNN)设计.训练和可视化等任务变得简单化.DIGITS是基于浏览器的接口,因而通过实时的网络行为的可视化,可以快速设计最优的DNN.DIGITS是开源软件,可在GitHub上找到,因而开发人员可以扩展和自定义DIGITS. Gi…
这篇文章主要介绍了一个名为Aluminum通信库,在这个库中主要针对Allreduce做了一些关于计算通信重叠以及针对延迟的优化,以加速分布式深度学习训练过程. 分布式训练的通信需求 通信何时发生 一般来说,神经网络的训练过程分为三步:前向传播.反向传播以及参数优化.在使用数据并行进行分布式训练的情况下,通信主要发生在反向传播之后与参数优化之前,在此阶段各个计算节点需要进行梯度的同步.广义上来讲,梯度的同步过程符合Allreduce语义.从实现上来说,我们既可以通过中心化的参数服务器架构来实现梯…
本文发表在MLHPC 2018上,主要介绍了一个名为Aluminum通信库,这个库针对Allreduce做了一些关于计算通信重叠以及针对延迟的优化,以加速分布式深度学习训练过程. 分布式训练的通信需求 通信何时发生 一般来说,神经网络的训练过程分为三步:前向传播.反向传播以及参数优化.在使用数据并行进行分布式训练的情况下,通信主要发生在反向传播之后与参数优化之前,在此阶段各个计算节点需要进行梯度的同步.广义上来讲,梯度的同步过程符合Allreduce语义.从实现上来说,我们既可以通过中心化的参数…
博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识.鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程. 有志同道合的小伙伴,欢迎一起交流和学习.我的邮箱: caijinping220@gmail.com .使用的是自己的老古董笔记本上面的 Geforce 103m 显卡,尽管显卡相对于如今主流的系列已经很的弱,可是对于学习来说.还是能够用的.本系列博文也遵从由简单到复杂,记录自己学习的过程. 0. 文件夹 GPU 编…