27.t分布随机近邻嵌入t-SNE】的更多相关文章

t分布随机近邻嵌入(t-distributed Stohastic Neighbor Embedding) 基本思路:为高维特征空间在二维平面(或三维超平面,不过基本上总是使用二维空间)上寻找一个投影,使得在原本的n维空间中相距很远的数据点在屏幕上同样相距较远,而原本相近的点在平面上仍然相近.本质上,近邻嵌入寻找保留了样本的邻居关系的新的维度较低的数据表示. 参数: perplexity 困惑度 step 迭代次数 epsilon 学习率 参考文献: [1]你真的会用 t-SNE 么?有关 t-…
Johnson–Lindenstrauss 引理表明任何高维数据集均可以被随机投影到一个较低维度的欧氏空间,同时可以控制pairwise距离的失真. 理论边界 由一个随机投影P所引入的失真是确定的,这是由于p定义了一个esp-embedding.其概率论定义如下: u和v是从一个形状是[n样例,n特征]=[n_samples, n_features]的数据集中的任意行,p室友一个形状是[n成分,n特征]=[n_components, n_features]的随机高斯N(0,1)矩阵的投影(或一个…
项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 PyTorch 其他项目 自然语言处理和语音处理 该部分项目涉及语音识别.多说话人语音处理.机器翻译.共指消解.情感分类.词嵌入/表征.语音生成.文本语音转换.视觉问答等任务,其中有一些是具体论文的 PyTorch 复现,此外还包括一些任务更广泛的库.工具集.框架. 这些项目有很多是官方的实现,其中…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
http://www.datakit.cn/blog/2017/02/05/t_sne_full.html t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来.此外,t-SNE 是一种非线性降维算法,非常适用于高维数据降维到2维或者3维,进行可视化. t-SNE是由SNE(Stochastic Neighbor Emb…
目录 1.概述 1.1 什么是TSNE 1.2 TSNE原理 1.2.1入门的原理介绍 1.2.2进阶的原理介绍 1.2.2.1 高维距离表示 1.2.2.2 低维相似度表示 1.2.2.3 惩罚函数 1.2.2.4 为什么是局部相似性 1.2.2.5 为什么选择高斯和t分布 2 python实现 参考内容 1.概述 1.1 什么是TSNE TSNE是由T和SNE组成,T分布和随机近邻嵌入(Stochastic neighbor Embedding). TSNE是一种可视化工具,将高位数据降到2…
目录 摘要 一.引言 A.基于视图的方法 B.基于体素的方法 C.基于几何的方法 二.材料 三.方法 A.问题陈述 B.图生成 C.图特征提取 D.变换不变函数 E.LDGCNN架构 F.冻结特征提取器和再训练分类器 四.结果 A.应用细节 B.点云分类 C.点云分割 D.时间和空间复杂度分析 E.可视化和消融实验 五.总结 LDGCNN : Linked Dynamic Graph CNN-Learning on PointCloud via Linking Hierarchical Feat…
https://blog.csdn.net/qq_34739497/article/details/80508262 Yellowbrick 是一套名为「Visualizers」的视觉诊断工具,它扩展了 Scikit-Learn API 以允许我们监督模型的选择过程.简而言之,Yellowbrick 将 Scikit-Learn 与 Matplotlib 结合在一起,并以传统 Scikit-Learn 的方式对模型进行可视化. 可视化器 可视化器(Visualizers)是一种从数据中学习的估计…
t-SNE 算法 1 前言 t-SNE 即 t-distributed stochastic neighbor embedding 是一种用于降维的机器学习算法,在 2008 年由 Laurens van der Maaten 和 Geoffrey Hinton 提出. t-SNE 是一种非线性降维算法,主要适用于将高维数据降维到 2 维或 3 维 ,方便可视化.但是由于以下种种原因导致它不适合于降维,仅适合可视化: 数据需要降维时,特征间常存在线性相关性,此时常使用线性降维算法,如 PCA.而…
1 http://bindog.github.io/blog/2018/02/10/model-explanation/ http://www.sohu.com/a/216216094_473283 https://jacobgil.github.io/deeplearning/class-activation-maps https://github.com/keras-team/keras/issues/8447 Grad-CAM 生成热力图 LIME 其实就是遮挡 t分布随机邻域嵌入(t-S…