AlexNet,VGG,GoogleNet,ResNet】的更多相关文章

AlexNet: VGGNet: 用3x3的小的卷积核代替大的卷积核,让网络只关注相邻的像素 3x3的感受野与7x7的感受野相同,但是需要更深的网络 这样使得参数更少 大多数内存占用在靠前的卷积层,大部分的参数在后面的全连接层 GoogleNet: Inception模块:设计了一个局部网络拓扑结构,然后堆放大量的局部拓扑在每一个的顶部 目的是将卷积和池化(filter)操作并行,最后在顶层将得到的输出串联得到一个张量进入下一层 这种做法会增加庞大的计算量: (图中输入输出尺寸不变是因为增加了零…
AlexNet (2012) The network had a very similar architecture as LeNet by Yann LeCun et al but was deeper, with more filters per layer, and with stacked convolutional layers. It consisted 11x11, 5x5,3x3, convolutions, max pooling, dropout, data augmenta…
1. LeNet 2. AlexNet 3. 参考文献: 1.  经典卷积神经网络结构——LeNet-5.AlexNet.VGG-16 2. 初探Alexnet网络结构 3.…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks by KOUSTUBH        this blog from: http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/ Convolutional neural networks are fantastic for visual…
#Deep Learning回顾#之LeNet.AlexNet.GoogLeNet.VGG.ResNet 深入浅出——网络模型中Inception的作用与结构全解析 图像识别中的深度残差学习(Deep Residual Learning for Image Recognition), 论文来源,翻译地址…
参考了: https://www.cnblogs.com/52machinelearning/p/5821591.html https://blog.csdn.net/qq_24695385/article/details/80368618 LeNet 参考:https://www.jianshu.com/p/ce609f9b5910 AlexNet 参考:https://baike.baidu.com/item/AlexNet/22689612?fr=aladdin GoogLeNet 201…
http://www.cnblogs.com/52machinelearning/p/5821591.html…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le…
深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意. 1.神经网络计算复杂. 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域. 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式. 神经网络发展的限制:数据.硬件 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状. 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
开局一张图,内容全靠编. 上图引用自 [卷积神经网络-进化史]从LeNet到AlexNet. 目前常用的卷积神经网络 深度学习现在是百花齐放,各种网络结构层出不穷,计划梳理下各个常用的卷积神经网络结构. 目前先梳理下用于图像分类的卷积神经网络 LeNet AlexNet VGG GoogLeNet ResNet 本文是关于卷积神经网络的开山之作LeNet的,之前想着论文较早,一直没有细读,仔细看了一遍收获满满啊. 本文有以下内容: LeNet 网络结构 LeNet 论文 LeNet keras实…
虽然网络性能得到了提高,但随之而来的就是效率问题(AlexNet VGG GoogLeNet Resnet DenseNet) 效率问题主要是模型的存储问题和模型进行预测的速度问题. Model Compression: 从模型权重数值角度压缩 从网络架构角度压缩 对于效率问题,通常的方法即在已经训练好的模型上进行压缩,使得网络携带更少的网络参数,从而解决内存问题,同时解决速度问题. 相比于在已经训练好的模型上进行处理,轻量化模型模型设计则是另辟蹊径.轻量化模型设计主要思想在于设计更高效的「网络…
卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深,架构越来越复杂,解决反向传播时梯度消失的方法也越来越巧妙.新年有假期,就好好总结一波CNN的各种经典架构吧,领略一下CNN的发展历程中各路大神之间的智慧碰撞之美. 上面那图是ILSVRC历年的Top-5错误率,…
case7 淋巴瘤子类分类实验记录 简介 分类问题:3分类 (identifying three sub-types of lymphoma: Chronic Lymphocytic Leukemia (CLL, 慢性淋巴细胞白血病), Follicular Lymphoma (FL,滤泡性淋巴瘤), and Mantle Cell Lymphoma (MCL,套细胞淋巴瘤) 网络模型:AlexNet 数据集: 原图1388*1040大小,共计374张, 1.4G. CLL:113, FL:13…
CS231n Winter 2016: Lecture 8 : Localization and Detection CS231n Winter 2017: Lecture 11: Detection and Segmentation https://zhuanlan.zhihu.com/qianxiaosi 本篇整理得比较杂,毕竟这一块小知识点较多,故,这里只是笔记收集,暂且不能称之为笔记整理. 以下三篇博文读来甚好,推荐: [目标检测]RCNN算法详解 [目标检测]Fast RCNN算法详解…
卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深,架构越来越复杂,解决反向传播时梯度消失的方法也越来越巧妙.新年有假期,就好好总结一波CNN的各种经典架构吧,领略一下CNN的发展历程中各路大神之间的智慧碰撞之美. 上面那图是ILSVRC历年的Top-5错误率,…
We perform image classification, one of the computer vision tasks deep learning shines at. As training from scratch is unfeasible in most cases (as it is very data hungry), we perform transfer learning using ResNet-50 pre-trained on ImageNet. We get…
Densely Connected Convolutional Networks,CVPR-2017-best paper之一(共两篇,另外一篇是apple关于GAN的paper),早在去年八月 DenseNets的paper就发布在arXiv上了. 就CNN的发展来说,2017注定被DenseNets给占了(12年开始,经典的CNN网络,AlexNet,VGG,GoogLenet系列,ResNet系列),除了AlexNet,VGG,GoogLenet,ResNet都是在传统CNN连接方式上做了…
1 LeNet-5 (1998) 第一个被提出的卷积网络架构,深度较浅,用于手写数字识别. 2 AlexNet (2012) 架构为: CONV1 ->MAX POOL1 ->NORM1 ->CONV2 ->MAX POOL2 ->NORM2 ->CONV3->CONV4->CONV5->Max POOL3->FC6 ->FC7->FC8 相比于LeNet-5,AlexNet除了使用了更深的结构,还用到了: 观察架构图可以看到,Ale…
CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深,架构越来越复杂,解决反向传播时梯度消失的方法也越来越巧妙. LeNet AlexNet ZF VGG GoogLeNet ResNet DenseNet 1.LeNet(1998) 闪光点:定义了CNN的基本组件,是CNN的鼻祖. LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决…
各位20级新同学好,我安排的课程没有教材,只有一些视频.论文和代码.大家可以看看大纲,感兴趣的同学参加即可.因为是第一次开课,大纲和进度会随时调整,同学们可以随时关注.初步计划每周两章,一个半月完成课程. Part 1 : 课程大纲 第一章 绪论 1.1 从专家系统到机器学习 1.2 从传统机器学习到深度学习 1.3 深度学习的能与不能 1.4 pytorch 基础 第二章 神经网络基础 2.1 浅层神经网络:生物神经元到单层感知器,多层感知器,反向传播和梯度消失 2.2 神经网络到深度学习:逐…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/269 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 前言 卷积神经网络的结构优化和深度加深,带来非常显著的图像识别效果提升,但同时也带来了高计算复杂度和更长的计算时间,实际工程应用中对效率的考虑也很多,研究界与工业界近年都在努力「保持效果的情况下压缩…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/271 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/273 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
torchvision是一个包,它服务于pytorch深度学习框架,用来生成图片,视频数据集,模型类和预训练的模型torchvision由以下四个部分组成:1. torchvision.datasets : Data loaders for popular vision datasets2. torchvision.models : Definitions for popular model architectures, such as AlexNet, VGG, and ResNet and…
http://www.mooc.ai/course/353/learn?lessonid=2289&groupId=0#lesson/2289 1.AlexNet, VGGNet, GoogleNet, ResNet https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html 1.1 AlexNet: 图像输入224*224*3.11*11滤波…
计算机视觉(computer vision)是从图像和视频中提出数值或符号信息的计算系统,更形象一点说,计算机视觉是让计算机具备像人类一样的眼睛,看到图像,并理解图像. 计算机视觉三大应用:识别.检测.分割. 目标跟踪.视频分割.风格迁移.生成对抗网络(GAN)直播换脸.视频生成(LSTM预测未来信息). 大部分计算机视觉,都靠深度学习了. 深度学习历史: 06-Hinton,神经网络反向传播训练. 12-提取特征用深度卷积. RNN-序列图像处理. LSTM-也是利用序列信息. 图像识别: A…