Part1-解线性方程组】的更多相关文章

在求解线性方程组时,会遇到以下几种情形:定解方程组.不定方程组.超定方程组.奇异方程组. 首先以定解线性方程组为例: format rat  化成分数 format short >> A=[,;,] A = >> B=[;] B = >> X=A\B X = 34.4828 12.4138 >> format rat >> X X = / / >> /*+/* ans = / >> >> format long…
用一上午的时间,用MPI编写了高斯消去法解线性方程组.这次只是针对单线程负责一个线程方程的求解,对于超大规模的方程组,需要按行分块,后面会在这个基础上进行修改.总结一下这次遇到的问题: (1)MPI_Allreduce()函数的使用: (2)MPI_Allgather()函数的使用: (3)线程之间不使用通信函数进行值传递(地址传递)是没有办法使用其他线程的数据,这是设计并行程序中最容易忽视的一点. #include "stdio.h" #include "mpi.h&quo…
一. 矩阵分解: 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解.满秩分解.QR分解.Jordan分解和SVD(奇异值)分解等,常见的有三种:1)三角分解法 (Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分解法 (Singular Value Decompostion). LU三角分解: 三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵…
我个人对基于物理的动画很感兴趣,最近在尝试阅读<Fluid Engine Development>,由于内容涉及太多的数学问题,而单纯学习数学又过于枯燥,难以坚持学习(我中途放弃好多次了),打算尝试通过编写博客总结知识的学习方法来学习. 在计算数值问题时,我们经常遇到线性方程,比如基于网格的流体模拟在求解扩散和压强,需要求解线性方程组. 线性方程组 线性方程组 \(\left\{ \begin{matrix} 2 * x - y =3 \\ -x + 2 * y = 6 \end{matrix…
The widget factory produces several different kinds of widgets. Each widget is carefully built by a skilled widgeteer. The time required to build a widget depends on its type: the simple widgets need only 3 days, but the most complex ones may need as…
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> using namespace std; #define N 20 double A[N][N],L[N][N],U[N][N],b[N],Y[N],X[N]; /// --------------------------------------------------------------------…
题面 高斯消元模板题. 这里直接讲述一下高斯消元的算法流程: 枚举每一列 \(c\): 找到第 \(c\) 列绝对值最大的一行: 将这一行换到最上面: 将该行的第一个数变成 \(1\): 将下面所有行的第 \(c\) 列变成 \(0\). 处理完后需要从最后一行往回迭代,求出每一个未知数的值. #include <bits/stdc++.h> using namespace std; const double eps = 1e-6; //浮点数误差 int n, m; double a[103…
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [l,u]=lu12(a,n) for k=1:n-1 for i=k+1:n a(i,k)=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-a(i,k)*a(k,j); end end end l=eye(n); u=zeros(n,n); for k=1:n fo…
题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边的边权设置成 \(x\) 然后构造基尔霍夫矩阵, 结果记为 \(val\) ,有 \[val=\sum_\limits{i=0}^{n-1}x^ians_i\] 其中 \(ans_i\) 表示和 \(S\) 的公共边数量为 \(i\) 的生成树的个数. 发现这是一个关于 \(x\) 的多项式,我们要…
               本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 在前几篇关于Math.NET的博客中(见上面链接),主要是介绍了Math.NET中主要的数值功能,并进行了简单的矩阵向量计算例子,接着使用Math.NET的矩阵等对象,对3种常用的矩阵数据交换格式的读写.一方面可以了解Math.NET的使用,另一方面以后也可以直接读取和保存数据为这两种格式,给大家的…
基于我们在线性代数中学习过的知识,我们知道解线性方程组本质上就是Gauss消元,也就是基于增广矩阵A的矩阵初等变换.关于数学层面的内容这里不做过多的介绍,这里的侧重点是从数值计算的角度来看这些常见的问题. 那么基于Gauss消元的算法,我们将会很好理解如下的Matlab代码: for j = 1:n-1 for i = j+1 : n mult = A(i,j)/A(j,j); A(i,:) = A(i,:) – mult*A(j,:);    %这里改写成A(i , j:n) = A(i,j:…
在实际生产生活中,需要我们解大量的线性方程组,例如是有探测.线性规划.电路等,这里我们便从理论角度建立一套解决线性方程组的体系. 线性方程组: 形如下面形式的方程组称为线性方程组. 回想起解决二元线性方程组我们的处理方法,本质上就是高斯消元法的个例,在解决多元线性方程组的时候,我们使用的便是高斯消元法. 探求线性方程组的解情况以及解线性方程组是线性代数核心要解决的问题. 然而为了更好的简化运算过程,我们确定每个方程中xi的位置,仅仅关注线性方程组的系数,因此这里自然的引入的矩阵: 这里我们便完成…
原文:[原创]开源Math.NET基础数学类库使用(06)数值分析之线性方程组直接求解 开源Math.NET基础数学类库使用系列文章总目录:   1.开源.NET基础数学计算组件Math.NET(一)综合介绍    2.开源.NET基础数学计算组件Math.NET(二)矩阵向量计算    3.开源.NET基础数学计算组件Math.NET(三)C#解析Matlab的mat格式   4.开源.NET基础数学类库使用Math.NET(四)C#解析Matrix Marke数据格式   5.开源.NET基…
1.误差的来源 模型误差:数学模型与实际问题之间的误差 观测误差:测量数据与实际数据的误差 方法误差:数学模型的精确解与数值方法得到的数值解之间的误差:例如 舍入误差:对数据进行四舍五入后产生的误差 2.减少误差的几种方法          现在,我们一般用计算机解决计算问题,使用最多的是Matlab软件.对实际问题进行数学建模时,可能存在模型误差,对数学模型进行数值求解时,我们使用的方法可能产生方法误差,我们输入计算机的数据一般是有测量误差的,计算机在运算过程的每一步又会产生舍入误差(十进制转…
目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-nonlinsolve() 1.说明: 2.源代码: 3.输出: (四)求解微分方程-dsolve() 1.说明: 2.源代码: 3.输出: 目录 前言 sympy不仅在符号运算方面强大,在解方程方面也是很强大. 本章节学习对应官网的:Solvers 官方教程 https://docs.sympy.o…
NumPy 简介 Python并没有提供数组功能.虽然列表可以完成基本的数组功能,但它不是真正的数组,而且在数据量比较大时,使用列表的速度会很慢.为此,Numpy提供了真正的数组功能,以及对数据进行快速处理的函数. NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字).在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank). 例如,在3D空间一个点的坐标 [1, 2, 3] 是一个秩为1的…
1. 最佳求解方案 Most efficient way to solve a system of linear equations 求解形如 Ax=b 的最佳方式 将 A 分解为三角矩阵,A=M1⋅M2 通过 M1⋅y=b 求解 y,使用 back substitution 通过 M2⋅x=y 求解 x,使用 back substitution 如果 A 为方阵,步骤 1 可以使用 LU 分解: 如果 A 非方阵,步骤 1 可以使用 QR 分解: 如果 A 是正定且不稀疏,步骤 1 可以使用…
此帖是根据期末考试复习重点补充完成, 由于使用word编辑引用图片和链接略有不便, 所以开此贴供复习及学习使用.侵删 复习要点 第一章 Matlab的基本概念,名称的来源,基本功能,帮助的使用方法 1.基本概念和名称来源:MATLAB [1]  是美国MathWorks公司出品的商业数学软件, 用于算法开发.数据可视化.数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分. MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(…
利用Python学习线性代数 -- 1.1 线性方程组 本节实现的主要功能函数,在源码文件linear_system中,后续章节将作为基本功能调用. 线性方程 线性方程组由一个或多个线性方程组成,如 \[ \begin{array}\\ x_1 - 2 x_2 &= -1\\ -x_1 + 3 x_2 &= 3 \end{array} \] 求包含两个变量两个线性方程的方程组的解,等价于求两条直线的交点. 这里可以画出书图1-1和1-2的线性方程组的图形. 通过改变线性方程的参数,观察图形…
目录 线性代数中的线性方程组 线性方程组 行化简解法和阶梯型矩阵 向量方程 矩阵方程$Ax = b$ 线性代数中的线性方程组 第一章从线性方程组的角度,通过解线性方程组,开始解释数学矩阵,以及和线性代数的联系 线性方程组 形如\(a_1x_1+a_2x_2+a_3x_3+....+a_nx_n=b\),其中\(a_1...a_n\)为实数或者复数. 对于一个线性方程组,所有可能的解称为他的解集,如果两个方程组,具有相同的解集,那么我们说这两个方程组等价的. 对于一个线性方程组,他的解有三种情况:…
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\gcd(x,y)\) 裴蜀定理 定理:对于方程\(ax+by=c\),其存在解的充要条件是\(gcd(a,b)|c\),可以拓展到n元的方程. 证明的话应该自己yy一下还是很容易(显然可得),不过要是想要严谨证明还是去百度吧qwq 扩展欧几里得定理 首先我们都知道\(gcd(a,b)=gcd(b,a…
最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 a. 列选主元 选取第k列中绝对值最大元素作为主元. b. 换行 c. 归一化 d. 消元 2).回代过程:由解出. 2.三角分解法(Doolittle分解) 将A分解为如下形式 由矩阵乘法原理 a.计算U的第一行,再计算L的第一列 b.设已求出U的1至r-1行,L的1至r-1列.先计算U的第r行…
ACM进阶计划ACM队不是为了一场比赛而存在的,为的是队员的整体提高.大学期间,ACM队队员必须要学好的课程有:lC/C++两种语言l高等数学l线性代数l数据结构l离散数学l数据库原理l操作系统原理l计算机组成原理l人工智能l编译原理l算法设计与分析除此之外,我希望你们能掌握一些其它的知识,因为知识都是相互联系,触类旁通的.以下学习计划每学期中的内容不分先后顺序,虽说是为立志于学习ACM的同学列的知识清单,但内容不限于ACM的知识.英语之类与专业相距较远的课程请自行分配时间,这里不再列举.大一上…
数据结构 一.数据管理vector:向量 numeric:数值型向量 logical:逻辑型向量 character:字符型向量list:列表 data.frame:数据框 c:连接为向量或列表length:求长度subset:求子集 seq,from:to,sequence:等差序列 rep:重复 NA:缺失值 NULL:空对象 sort,order,unique,rev:排序 unlist:展平列表 attr,attributes:对象属性 mode,typeof:对象存储模式与类型 nam…
OpenCASCADE Interpolation - Lagrange eryar@163.com Abstract. Power basis polynomial is the most simple polynomial function. It also be called power series. OpenCASCADE provides basic computation functions for polynomial functions, such as evaluate th…
"求线段交点"是一种非常基础的几何计算, 在很多游戏中都会被使用到. 下面我就现学现卖的把最近才学会的一些"求线段交点"的算法说一说, 希望对大家有所帮助. 本文讲的内容都很初级, 主要是面向和我一样的初学者, 所以请各位算法帝们轻拍啊 嘎嘎 引用 已知线段1(a,b) 和线段2(c,d) ,其中a b c d为端点, 求线段交点p .(平行或共线视作不相交) =============================== 算法一: 求两条线段所在直线的交点, 再判…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
NewQuant的设计思路——整体的领域分析 “领域驱动设计(DDD)”是著名软件工程建模专家Eric Evans提出的一个重要概念,是“面向对象分析设计(OOAD)”的深化.当业务逻辑变得复杂,系统变得庞大时,OOAD会使人陷入“只见树木不见树林”的处境,而DDD可以指导设计人员暂时忽略掉琐碎细节,高屋建瓴的观察问题.如果要全面了解DDD,请阅读Eric Evans的著作<领域驱动设计>和<实现领域驱动设计>. 在NewQuant的设计中,DDD的思想给了我很大启发.简单直观地讲…
2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is less than 0.5 × 10$^{−p}$ .-P29Bisection Method的优点是计算次数(step)是确定的(interval<精度).后面介绍的算法的interval是不确定的, 所以什么时候结束计算呢?不知道.所以定义“stopping criteria’’来决定什么时候结束…
国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98试题PICTURE谈起>来煜坤:<把握本质,灵活运用——动态规划的深入探讨>齐鑫:<搜索方法中的剪枝优化>邵铮:<数学模型的建立.比较和应用>石润婷:<隐蔽化.多维化.开放化——论当今信息学竞赛中数学建模的灵活性>杨帆:<准确性.全面性.美观性——测试数据设计中的三要素>周咏基:<论随机化算法的原理与设计> 国家集训队2000论文集 陈彧:<信…