AcWing 872. 最大公约数】的更多相关文章

#include <iostream> #include <algorithm> using namespace std; //辗转相除法 //a和b的最大公约数 = b和(a % b)的最大公约数 int gcd(int a, int b) { //如果b不是0 返回gcd(b, a % b)] //当b是0 直接返回a return b ? gcd(b, a % b) : a; } int main() { int n; cin >> n; while (n --…
题目:https://www.acwing.com/problem/content/222/ 题意:求1-n范围内,gcd(x,y)是素数的对数 思路:首先我们可以针对每个素数p,那么他的贡献应该时   [1,n/p] 互质的对数,这个其实就是遍历这个范围累加每个数的欧拉值,这里我们就可以用个前缀和,然后计算即可 #include<bits/stdc++.h> #define maxn 10000005 #define len 100005 #define mod 1000000007 usi…
传送门 题目描述 给定整数N,求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)有多少对. GCD(x,y)即求x,y的最大公约数. 输入格式 输入一个整数N 输出格式 输出一个整数,表示满足条件的数对数量. 数据范围 1≤N≤10^7 输入样例: 4 输出样例: 4 题解:本题要求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)数量,相当于求:对于N以内的每一个素数p,1<=x,y<=N/p 中GCD(x,y)为1的数对(x,y)数量和.我们知道欧…
给定整数N,求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)有多少对. GCD(x,y)即求x,y的最大公约数. #include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e7 + 233; int primes[maxn], mu[maxn], sum[maxn], cnt; bool st[maxn]; void get_primes(int n) { m…
246. 区间最大公约数 思路: 首先根据更相减损术,我们得到一个结论: \(gcd(a_l, a_{l+1}, ...,a_r) = gcd(a_l, a_{l+1}-a_l, a_{l+2}-a_{l+1}, ..., a_r-a_{r-1})\) 于是我们用线段树维护差分数组,树状数组维护每个位置的值,然后查询就是\(gcd(a_l+bit.sum(l), segtree.query(l+1, r))\). 代码: #pragma GCC optimize(2) #pragma GCC o…
给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d. 2.“Q l r”,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD). 对于每个询问,输出一个整数表示答案. 输入格式 第一行两个整数N,M. 第二行N个整数A[i]. 接下来M行表示M条指令,每条指令的格式如题目描述所示. 输出格式 对于每个询问,输出一个整数表示答案. 每个答案占一行. 数据范围 N≤500000,M≤…
辗转相除法最大的用途就是用来求两个数的最大公约数. 用(a,b)来表示a和b的最大公约数. 有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c). (证明过程请参考其它资料) 例:求 15750 与27216的最大公约数. 解: ∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466) ∵15750=11466×1+4284 ∴(15750,11466)=(11466,4284) ∵11466=4284×2+2898 ∴(11466…
今天面试,遇到面试官询求最大公约数.小学就学过的奥数题,居然忘了!只好回答分解质因数再求解! 回来果断复习下,常用方法辗转相除法和更相减损法,小学奥数都学过,很简单,就不细说了,忘了的话可以百度:http://baike.baidu.com/link?url=Ba106RbHkMjZm3rolmCHEEFt3eDkVbngcReykcqt4Wv0dbTI_0ZmTDE5b0X-xWFx 以下是代码实现,这两种方法,还有常规的分解因式,顺便比较了一下效率,其中分解因式用了两种方法来求取小于该数字的…
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ∗ gcd (Al..Ar). JYY 希望找出权值最大的子序列. Input 输入一行包含一个正整数 N.接下来一行,包含 N个正整数,表示序列Ai1 < =  Ai < =  10^12, 1 < =  N < =  100,000 Output 输出文件包…
除了分解质因数,还有另一种适用于求几个较小数的最大公约数.最小公倍数的方法 下面是数学证明及算法实现 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表示a1,a2,..,an的最大公约数,其中a1,a2,..,an为非负整数.对于两个数a,b,有[a,b]=ab/(a,b),因此两个数最小公倍数可以用其最大公约数计算.但对于多个数,并没有[a1,a2,..,an]=M/(a1,a2,..,an)成立,M为a1,a2,..,an的乘积.例如:[2,…