深度学习之numpy.poly1d()函数】的更多相关文章

1.np.poly1d()此函数有两个参数: 参数1:为一个数组,若没有参数2,则生成一个多项式,例如: p = np.poly1d([2,3,5,7]) print(p)    ==>>2x3 + 3x2 + 5x + 7    数组中的数值为coefficient(系数),从后往前 0,1,2...为位置书的次数 参数2:若参数2为True,则表示把数组中的值作为根,然后反推多项式,例如: q = np.poly1d([2,3,5],True) print(q)   ===>>…
一.Numpy介绍.为什么要用Numpy 1.Numpy介绍 Numpy是Python的一个扩展包,语法和Matlab有很多相似之处.它支持高维数组和矩阵运算,也提供了许多数组和矩阵运算的函数.另外,它在数组和矩阵运算方面速度很快,效率很高. 2.为什么要用Numpy Numpy向量化计算与非向量化计算性能比较 # coding: utf-8 import time import numpy as np # Numpy向量化测试 a = np.random.rand(1000000) b = n…
# -*- coding: utf-8 -*-"""主要记录代码,相关说明采用注释形势,供日常总结.查阅使用,不定时更新.Created on Fri Aug 24 19:57:53 2018 @author: Dev""" import numpy as np import random   # 常用函数 arr = np.arange(10) print(np.sqrt(arr))    # 求平方根 print(np.exp(arr))  …
深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种,暂且称之为He Initialization: import numpy as np W = np.random.randn(node_in, node_out) / np.sqrt(node_in / 2) 使用Batch Normalization Layer可以有效降低深度网络对weight…
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别. 其具体的过程是:先使用已经提供的训练数据对搭建好的神经网络模型进行训练并完成参数优化,然后使用优化好的模型对测试数据进行预测,对比预测值和真实值之间的损失值,同时计算出结果预测的准确率.在将要搭建的模型中会使用到…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
转自: https://www.leiphone.com/news/201703/3qMp45aQtbxTdzmK.htmla https://blog.csdn.net/shuzfan/article/details/51338178  [原理推导] 背景 深度学习模型训练的过程本质是对weight(即参数 W)进行更新,这需要每个参数有相应的初始值.有人可能会说:“参数初始化有什么难点?直接将所有weight初始化为0或者初始化为随机数!”对一些简单的机器学习模型,或当optimizatio…
本文转自:谷歌工程师:聊一聊深度学习的weight initialization TLDR (or the take-away) Weight Initialization matters!!! 深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种,暂且称之为He Initialization: 使用Batch Normalization Layer…
始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间…
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9769301.html Keras是什么? Keras:基于Theano和TensorFlow的深度学习库 Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow.Theano以及CNTK后端.Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可…