本文是Tsung-Yu Lin大神所作(B-CNN一作),主要是探究了一种无序的池化方法\(\gamma\) -democratic aggregators,可以最小化干扰信息或者对二阶特征的内容均等化.从另一个work line,对特征聚合后,作matrix power normalization(Abbreviated as MPN)可以有效提升二阶特征的表达能力,MPN在aggregation时,隐含地均等化二阶特征.基于以上信息,提出了\(\gamma\)-democratic aggr…
通常的图像转换模型(如 StarGAN.CycleGAN.IcGAN)无法实现同时训练,不同的转换配对也不能组合.在本文中,英属哥伦比亚大学(UBC)与腾讯 AI Lab 共同提出了一种新型的模块化多域生成对抗网络架构——ModularGAN,生成的结果优于以上三种基线结果.该架构由几个可重复利用和可组合的模块组成.不同的模块可以在测试时轻松组合,以便在不同的域中高效地生成/转换图像.研究者称,这是首个模块化的 GAN 架构. 据了解,腾讯 AI Lab 共有 19 篇论文入选 ECCV 201…
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要内容 参考文献 (1) 解决问题 大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep). (2) 主要贡献 Contribution 1. 将许多现有的NRL算法架构总结…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
论文原址:https://arxiv.org/abs/1810.08425 github:https://github.com/KimSoybean/ScratchDet 摘要 当前较为流行的检测算法是在经典的大规模分类的数据集上进行微调,但这样做会存在两个问题: (1)分类任务与检测任务二者之间对位置的敏感性差异较大,进而造成了优化目标之间存在偏差. (2)目标检测的结构受制于分类模型,进而造成对模型修改上的不便. 为了应对上面的这两个问题,从头重新训练检测器是一种可行的方法.但这种方法又存在…
全球计算机视觉三大顶会之一 ECCV 2018(European Conference on Computer Vision)即将于 9 月 8 -14 日在德国慕尼黑拉开帷幕,旷视科技有多篇论文被此大会接收.在这篇论文中,旷视科技提出的一种通过学习局部单应变换实现人脸校正的全新方法——GridFace. 论文名称:<GridFace: Face Rectification via Learning Local Homography Transformations> 论文链接:https://…
全球计算机视觉三大顶会之一 ECCV 2018(European Conference on Computer Vision)即将于 9 月 8 -14 日在德国慕尼黑拉开帷幕.届时,旷视首席科学家孙剑博士将带领团队远赴盛会,助力计算机视觉技术的交流与落地.本文介绍了旷视科技被 ECCV 2018 所接收的一篇论文,该论文提出了一种用于场景理解的统一感知解析网络——UPerNet. 论文名称:<Unified Perceptual Parsing for Scene Understanding>…
论文地址:https://arxiv.org/abs/1808.01244v1 论文代码:https://github.com/umich-vl/CornerNet 概述 CornerNet是一篇发表在ECCV 2018的目标检测论文.有别于主流目标检测算法基于anchor box的思想,CornerNet将关键点检测用于目标检测,通过检测目标区域的左上角和右下角这两个关键点来获取预测框.CornerNet创新性强,而且检测效果很好,在MS COCO数据集上的AP达到42.1%. CornerN…
文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze 来自于:Facebook AI Research 发表于:ECCV 2018 目录 •相关链接 •相关方法介绍 •文章出发点 •文章亮点与贡献 •方法细节 •实验结果 •分析与总结 相关链接 论文:https://arxiv.or…
YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YOLO已经发布了两个版本,在下文中分别称为YOLO V1和YOLO V2.YOLO V2的代码目前作为Darknet的一部分开源在GitHub.在这篇博客中,记录了阅读YOLO两个版本论文中的重点内容,并着重总结V2版本的改进. Update@2018/04: YOLO v3已经发布!可以参考我的博客…