学习Caffe(一)使用Caffe】的更多相关文章

上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" 按钮 ,选择“classification" 在打开页面右下角可以看到,系统提供了一个caffe model,分别为LeNet, AlexNet, GoogLeNet, 如果使用这三个模型,则所有参数都已经设置好了,就不用再设置了. 在下面,系统为我们列举出了本机所带的显卡,我们可以选择其中一块…
首先,Blob使用的小例子(通过运行结果即可知道相关功能): #include <vector> #include <caffe/blob.hpp> #include <caffe/util/io.hpp>//磁盘读写 #include <iostream> using namespace std; using namespace caffe; int main() { Blob<float> a; cout<<"Size:…
配置caffe后在matlab中测试报错. 未定义变量 "caffe" 或类 "caffe.reset_all". 我的原因是:caffe在matlab接口处没配置好. 配置MatlabSupport 见caffe安装配置.matlab接口 - ostartech - 博客园 https://www.cnblogs.com/wxl845235800/p/10599265.html 重新配置.…
1.  首先安装好docker,拉取intel caffe image: $ docker pull bvlc/caffe:intel 试着运行: $ docker run -it bvlc/caffe:intel /bin/bash 2. 拉取 intel caffe 源码: git clone https://github.com/intel/caffe git checkout 1.0 或者下载源码包: wget https://github.com/intel/caffe/archive…
caffe.cpp文件完成对网络模型以及模型配置参数的读入和提取,提供了网络模型训练的入口函数train和对模型的测试入口函数test.文件中使用了很多gflags和glog指令,gflags是google的一个开源的处理命令行参数的库,glog是一个有效的日志记录工具. 补充一点CUDA中查询GPU设备属性的知识: CUDA C中的cudaGetDeviceProperties函数可以很方便的获取到设备的信息,caffe.cpp中就使用到了这个函数查询设备信息,函数原型是: cudaError…
经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http://www.cnblogs.com/denny402/tag/caffe/ 也许有人会觉得比较复杂.确实,对于一个使用惯了windows视窗操作的用户来说,各种命令就要了人命,甚至会非常抵触命令操作.没有学过python,要自己去用python编程实现可视化,也是非常头痛的事情.幸好现在有了nvidi…
如何在Caffe中配置每一个层的结构 最近刚在电脑上装好Caffe,由于神经网络中有不同的层结构,不同类型的层又有不同的参数,所有就根据Caffe官网的说明文档做了一个简单的总结. 1. Vision Layers 1.1 卷积层(Convolution) 类型:CONVOLUTION 例子 layers { name: "conv1" type: CONVOLUTION bottom: "data" top: "conv1" blobs_lr:…
Caffe是一个深度学习框架,本文讲阐述如何在linux下安装GPU加速的caffe. 系统配置是: OS: Ubuntu14.04 CPU: i5-4690 GPU: GTX960 RAM: 8G 安装方法参见caffe的官方文档:http://caffe.berkeleyvision.org/installation.html#compilation 依赖项: CUDA:推荐7.0以上的cuda和最新的显卡驱动. BLAS:ATLAS, MKL, or OpenBLAS.C++矩阵运算库.…
知乎上这位博主画的caffe的整体结构:https://zhuanlan.zhihu.com/p/21796890?refer=hsmyy Caffe 做train时的流程图,来自http://caffecn.cn/?/question/242…
在某社区看到的回答,觉得不错就转过来了:http://caffecn.cn/?/question/123 Caffe从四个层次来理解:Blob,Layer,Net,Solver. 1.Blob Caffe的基本数据结构,用四维矩阵Batch*Channel*Height*Width表示,存储了包括神经元的 激活值.参数.以及相应的梯度(dW,db).其中包含有cpu_data.gpu_data.cpu_diff.gpu_diff. mutable_cpu_data.mutable_gpu_dat…
Caffe 提供了matlab接口,可以用于提取图像的feature.…
caffe是好用,可是配置其环境实在是太痛苦了,依赖的库很多不说,在VS上编译还各种报错,你能想象那种被一百多个红色提示所笼罩的恐惧.  且网上很多教程是VS2013环境下编译的,问人很多也说让我把15卸载了装13,我的答案是:偏不  记下这个艰难的过程,万一还要再来一次呢-- Attention:  本文使用的caffe windows环境配置为:  VS2015+CMake3.7.2+Python2.7+Anaconda2-4.3.1(X64)+CUDA8.0(x64)+cuDNN v5.1…
Minst训练 我的路径:G:\Caffe\Caffe For Windows\examples\mnist  对于新手来说,初步完成环境的配置后,一脸茫然.不知如何跑Demo,有么有!那么接下来的教程就是我们这些新手的福利了. 第一步:如果前面的train_net.cpp编译通过了,那么这个就非常简单.Caffe训练和测试的数据都是需要leveldb格式的,niuzhiheng大牛已经给我们转好了MNIST的数据格式.如下图:  第二步:如上图所示,文件夹下有个get_mnist_leveld…
为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载.但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了. 注意:在caffe中运行所有程序,都必须在根目录下进行. 1.mnist实例 mnist是一个手写数字库.mnist最初用于支票上的手写数字识别, 现在成了DL的入门练习库.征对mnist识别的专门模型是Lenet,算是最早的cnn模型了. mnist数据训练样本为60000张,测试样本为10000张,每…
一.前述 Caffe,全称Convolutional Architecture for Fast Feature Embedding.是一种常用的深度学习框架,主要应用在视频.图像处理方面的应用上.caffe是一个清晰,可读性高,快速的深度学习框架.作者是贾扬清,加州大学伯克利的ph.D,现就职于Facebook.caffe的官网是http://caffe.berkeleyvision.org/.  二.具体 1.输入层 layer { name: "cifar" type: &quo…
一.前述 solve主要是定义求解过程,超参数的 二.具体 #往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解. #caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择. Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad&q…
修改build_win.cmd如下: @echo off @setlocal EnableDelayedExpansion :: Default values if DEFINED APPVEYOR ( echo Setting Appveyor defaults if NOT DEFINED MSVC_VERSION set MSVC_VERSION=14 if NOT DEFINED WITH_NINJA set WITH_NINJA=1 if NOT DEFINED CPU_ONLY se…
完全按照博文来就好了:http://blog.csdn.net/u012905422/article/details/52794693…
深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些人并不知道该怎么办.在此我将mnist数据进行了转化,变成了一张张的图片,我们练习就从图片开始.mnist图片数据我放在了百度云盘. mnist图片数据下载:htt…
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张,而一般深度学习都要求样本量在1万以上,因此训练出来的model精度太低,根本用不上,那怎么办呢? 那就用caffe团队提供给我们的model吧. 因为训练好的model里面存放的就是一些参数,因此我们实际上就是把别人预先训练好的参数,拿来作为我们的初始化参数,而不需…
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 1.caffe分享 1.1.caffe起源 1·2.caffe介绍 1.3.caffe其他方向 2.讨论 2.1.caffe算法与结构 2.2.caffe工程与应用 2.3.模型训练与调参 2.4.caffe与DL的学习与方向 2.5.其他 3.附录 1.caffe分享 我用的ppt基本上和我们在…
前言: 正文: 1.安装必要依赖包: sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libatlas-base-dev sudo apt-get…
前言: 通过检索论文.书籍.博客,继续学习Caffe,千里之行始于足下,继续努力.将自己学到的一些东西记录下来,方便日后的整理. 正文: 1.代码结构梳理 在终端下运行如下命令,可以查看caffe代码结构,我将其梳理了一下: root@ygh:/home/ygh/caffe# tree -d . ├── build -> .build_release //编译结果存放处,子目录结构与主目录类似 ├── cmake //使用CMake编译时会用到 │   ├── External │   ├──…
前言: 由于业务需要,接触caffe已经有接近半年,一直忙着阅读各种论文,重现大大小小的模型. 期间也总结过一些caffe源码学习笔记,断断续续,这次打算系统的记录一下caffe源码学习笔记,巩固一下C++,同时也梳理一下自己之前的理解. 正文: 我们先不看caffe的框架结构,先介绍一下caffe.proto,是google开源的一种数据交互格式--Google Protobuf,这种数据的格式,我们可以看到caffe.proto中内容: syntax = "proto2"; pac…
深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-caffe-on-mac-os-x-10-10-for-dummies-like-me/] 2.基于1的两篇中文博客: [http://ylzhao.blogspot.kr/2015/04/mac-os-x-1010caffe.html][http://www.jianshu.com/p/8795b88…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "He…
开发环境介绍 在SuperVessel云上,我们为大家免费提供当前火热的caffe深度学习开发环境.SuperVessel的Caffe有如下优点: 1) 免去了繁琐的Caffe环境的安装配置,即申请即使用. 2) 集成了SuperVessel先进的GPU虚拟化技术,POWER8,GPU与cuDNN库三重加速的Caffe,极大的节约您的模型训练时间. 3) 环境集成了一些优秀的Caffe开源模型,如图片识别与人脸识别模型,帮助您更快的学习理解Caffe,助力您搭建有趣的深度学习应用. Caffe深…
Caffe 全称为 Convolutional Architecture for Fast Feature Embedding,是一个被广泛使用的开源深度学习框架(在 TensorFlow 出现之前一直是深度学习领域 GitHub star 最多的项目),目前由伯克利视觉学中心(Berkeley Vision and Learning Center,BVLC)进行维护.Caffe 的创始人是加州大学伯克利的 Ph.D.贾扬清,他同时也是TensorFlow的作者之一,曾工作于 MSRA.NEC…
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一个测试程序 Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn Caffe学习系列(2):数据层及参数 Caffe学习系列(3):视觉层(Vision Layers)及参数 Caffe学习系列(4):激活层(Activiation Layers)及参数…
背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Tensorflow做深度学习做深度学习的网络搭建和训练需要通过PYTHON代码才能使用,对于不太会写代码的同学还是有一定的使用门槛的.本文将介绍另一个深度学习框架Caffe,通过Caffe只需要填写一些配置文件就可以实现图像分类的模型训练. 关于PAI的深度学习功能开通,请务必提前阅读https://…