逻辑回归代码demo】的更多相关文章

程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8D%AE.zip 概念 代价函数关于参数的偏导 梯度下降法最终的推导公式如下 多分类问题可以转为2分类问题 正则化处理可以防止过拟合,下面是正则化后的代价函数和求导后的式子 正确率和召回率F1指标 我们希望自己预测的结果希望更准确那么查准率就更高,如果希望更获得更多数量的正确结果,那么查全率更重要,…
在Hinton的教程中, 使用Python的theano库搭建的CNN是其中重要一环, 而其中的所谓的SGD - stochastic gradient descend算法又是如何实现的呢? 看下面源码 (篇幅考虑只取测试模型函数, 训练函数只是多了一个updates参数, 并且部分参数有改动): classifier = LogisticRegression(input=x, n_in=24 * 48, n_out=32) cost = classifier.negative_log_like…
Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 使用数据类型:数值型和标称型数据. 介绍逻辑回归之前,我们先看一问题,有个黑箱,里面有白球和黑球,如何判断它们的比例. 我们从里面抓3个球,2个黑球,1个白球.这时候,有人就直接得出了黑球67%,白球占比33%.这个时候,其实这个人使用了最大似然概率的思想,通俗来讲,…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归代码主要包含三个部分 1.classfication:逻辑回归分类器 2.optimization:优化方法,包含了随机梯度.LBFGS两种算法 3.evaluation:算法效果评估计算…
作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCostFunction 计算代价和梯度.实现 OneVsAll 使用 fmincg 函数进行训练.使用 OneVsAll 里训练好的 theta 对 X 的数据类型进行预测,得到平均准确率. (2)多分类神经网络:两层 theta 权重值在 ex3weights 里已提供.参数不需要调,只需要在 pr…
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(logistic regression)虽然叫回归,但他做的事实际上是分类.这里我们讨论二元分类,即只分两类,y属于{0,1}. 选择如下的假设函数: 这里写图片描述 其中: 这里写图片描述 上式称为逻辑函数或S型函数,图像如下图: 这里写图片描述 可以看到,当z趋向正无穷,g(z)趋向1,当z趋向负无穷g(z)趋…
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上是一种分类方法,在实际应用中,逻辑回归可以说是应用最广泛的机器学习算法之一 回归问题怎么解决分类问题? 将样本的特征和样本发生的概率联系起来,而概率是一个数.换句话说,我预测的是这个样本发生的概率是多少,所以可以管它叫做回归问题 在许多机器学习算法中,我们都是在追求这样的一个函数 例如我们希望预测一个学生的成…
Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法. Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上 代…
Iris花的分类是经典的逻辑回归的代表:但是其代码中包含了大量的python库的核心处理模式,这篇文章就是剖析python代码的文章. #取用下标为2,3的两个feture,分别是花的宽度和长度: #第一个维度取“:”代表着所有行,第二个维度代表列范围,这个参数模式其实和reshape很像 X = iris["data"][:, (2,3)] y = (iris["target"]==2).astype(np.int) #分类做了数字转化,如果是Iris,ture,…
数据说明 本数据是一份汽车贷款违约数据 application_id    申请者ID account_number 账户号 bad_ind            是否违约 vehicle_year      汽车购买时间 vehicle_make     汽车制造商 bankruptcy_ind 曾经破产标识 tot_derog           五年内信用不良事件数量(比如手机欠费消号) tot_tr                  全体账户数量 age_oldest_tr     最久…