反思K-S指标(KPMG大数据挖掘)】的更多相关文章

评估信用评级模型,反思K-S指标 2015-12-05 KPMG大数据团队 KPMG大数据挖掘 “信用评级”的概念听起来可以十分直截了当.比如一天早上你接到电话,有个熟人跟你借钱,而你将在半睡半醒间迅速做出决定:借,还是不借.在灵光闪现的一秒里,你或许考虑了对方的脾气秉性.经济实力.家庭住址.种种黑白历史……但最终,你面对的是一道只有两个选项的单选题,并需要承担选择的后果,这就是一种最简单的“评级”.商业银行对待申请借贷的客户也类似.为了控制不良贷款.避免损失,银行需要提前对客户进行信用评级.当…
    顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http://www.tipdm.com 邮箱: services@tipdm.com 热线: 40068-40020 企业QQ:40068-40020 邮编: 510663 电话: (020)82039399 目  录 1                     引言....................…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法. CART算法全称是Classification and regression tree,也就是分类回归树的意思.和之前介绍的ID3和C4.5一样,CART算法同样是决策树模型的一种经典的实现.决策树这个模型一共有三种实现方式,前面我们已经介绍了ID3和C4.5两种,今天刚好补齐这最后一种. 算法特点 CART称为分类回归树,从名字上我们也看得出来…
在网络日益发达的现在,也伴随着有益信息与造成不稳定因素的信息也随之日益泛滥,为了网民的思想健康,也为了社会的和谐,在许多对外公共场合下,有些内容是要经过审查才能显示的.在网络审查初期,都是通过人工审核,这种审核方式虽然准确且智能,但与网络文字产生的速度相比,其效率就显示微不足道了!因此,自动化的系统处理方式的需求越来越强烈-- 而NLPIR大数据挖掘平台是一套专门针对原始文本集进行处理和加工的软件,提供了中间件处理效果的可视化展示,也可以作为小规模数据的处理加工工具.用户可以使用该软件对自己的数…
1.概述 大数据时代,数据的存储与挖掘至关重要.企业在追求高可用性.高扩展性及高容错性的大数据处理平台的同时还希望能够降低成本,而Hadoop为实现这些需求提供了解决方案.面对Hadoop的普及和学习热潮,笔者愿意分享自己多年的开发经验,带领读者比较轻松地掌握Hadoop数据挖掘的相关知识.这边是笔者编写本书的原因.本书使用通俗易懂的语言进行讲解,从基础部署到集群管理,再到底层设计等内容均由涉及.通过阅读本书,读者可以较为轻松地掌握Hadoop大数据挖掘与分析的相关技术. 本书目前已在网上商城上…
31页PPT:基于Spark的移动大数据挖掘 数盟11.16 Data Science Meetup(DSM北京)分享:基于Spark的移动大数据挖掘分享嘉宾:张夏天(TalkingData首席数据科学家) @张夏天_机器学习 内容提要: TalkingData移动数据服务现状和挑战 为什么选择Spark TalkingData移动大数据挖掘 应用.系统和算法 Spark不是全部 以下为详细内容:…
如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:“菠萝”!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图. 这两个水果又是什么呢? 这就是菠萝与凤梨的故事,下边即将用菠萝和凤梨,给大家讲述怎么用一个算法来知道这是个什么水果的过程,也就是什么是K最近邻算法. (给非吃货同学们补充一个生活小常识,菠萝的叶子有刺,凤梨没有.菠萝的凹槽处是黄色的,而凤梨的凹槽处是绿色的,以后千万不要买错哦!!!) 上边这张图…
一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景           “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点. “大数据” 其实离我们的生活并不遥远,大到微博的海量用户信息,小到一个小区超市的月销售清单,都蕴含着大量潜在的商业价值. 正是由于数据量的快速增长,并且已经远远超过了人们的数据分析能力.因此,科学.商用等领域都迫切需要智能化.自动化的数据分析工具.在这样的背景下,数据挖…
preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们. Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等. 数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升.…
@(hadoop)[Spark, MLlib, 数据挖掘, 关联规则, 算法] [TOC] 〇.简介 经典的关联规则挖掘算法包括Apriori算法和FP-growth算法.Apriori算法多次扫描交易数据库,每次利用候选频繁集产生频繁集:而FP-growth则利用树形结构,无需产生候选频繁集而是直接得到频繁集,大大减少扫描交易数据库的次数,从而提高了算法的效率.但是apriori的算法扩展性较好,可以用于并行计算等领域. 关联规则的目的就是在一个数据集中找出项与项之间的关系,适用于在大数量的项…