神经网络为什么需要多次epoch】的更多相关文章

Δw(t)=−ε ∂w(t)∂E​ +αΔw(t−1)(9) 我们知道反向传播每次迭代的效果是这样的:w=w+Δw(t) w=w+\Delta w(t)w=w+Δw(t) 我们知道,每条训练数据都会导致训练的过程中,计算一次∂E∂w(t) \frac{∂E}{∂w(t)} ∂w(t)∂E​ ,假如我的wi w_iw i​ 初始化为0,最终的值是0.7但是我的学习率ε=0.0001 \varepsilon=0.0001ε=0.0001,一万条数据,epoch=1够不够,可能够,也可能不够.因为你想…
前言: 用手工设计的两层神经网络,经过200个epoch,最后得到0.9599,约0.96的精度 正文 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data\MNIST_data",one_hot=True) #每个批次的大小 batch_size = 32 #计算一共有…
代表的是迭代的次数,如果过少会欠拟合,反之过多会过拟合 EPOCHS 当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个 epoch.   然而,当一个 epoch 对于计算机而言太庞大的时候,就需要把它分成多个小块.   为什么要使用多于一个 epoch? 我知道这刚开始听起来会很奇怪,在神经网络中传递完整的数据集一次是不够的,而且我们需要将完整的数据集在同样的神经网络中传递多次.但是请记住,我们使用的是有限的数据集,并且我们使用一个迭代过程即梯度下降,优化学习过程和图示.因…
batch 深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能…
一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小,即单次训练使用的样本数 为什么需要有 Batch_Size :batch size 的正确选择是为了在内存效率和内存容量之间寻找最佳平衡. Batch size调参经验总结: 相对于正常数据集,如果Batch_Size过小,训练数据就会非常难收敛,从而导致underfitting. 增大Batch_…
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说…
本文系qitta的文章翻译而成,由renzhe0009实现.转载请注明以上信息,谢谢合作. 本文主要讲解以recurrent neural network为主,以及使用Chainer和自然语言处理其中的encoder-decoder翻译模型. 并将英中机器翻译用代码实现. Recurrent Neural Network 最基本的recurrent neural network(RNN),像下面的图一样,最典型的是追加3层神经网络隐含层的反馈.   这是非常简单的模型,本文接下来介绍的翻译模型就…
Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Michael Nielsen 先生的 Deep Learning 教程. 用了他的代码在theano下测试了下中文车牌字符的识别.由于我没有GPU,简单的在进行了16个epoch之后,识别率达到了 98.41% ,由于图像本来质量就不高,达到这个识别率,效果挺不错了. 一共 31 类 车牌中文字符数据来源于…
之前一直用theano训练样本,最近需要转成c或c++实现.在网上参考了一下其它代码,还是喜欢c++.但是看了几份cpp代码之后,发现都多少有些bug,很不爽.由于本人编码能力较弱,还花了不少时间改正.另外又添加了写权值和读权值的功能,可以保存训练的结果.下面是代码实现的基本功能描述. 问题描述: 用cpp重写mlp,即普通的多层神经网络.需要实现多个隐藏层与输出层互连,分类层采用softmax分类. 测试例子: 测试例子为自己构造,将3位二进制转为10进制有8中可能,我分别让它们对应label…