8 月 19 日至 23 日,数据挖掘顶会 KDD 2018 在英国伦敦举行,昨日大会公布了最佳论文等奖项.最佳论文来自慕尼黑工业大学的研究者,他们提出了针对图深度学习模型的对抗攻击方法,是首个在属性图上的对抗攻击研究.研究者还提出了一种利用增量计算的高效算法 Nettack.此外,实验证明该攻击方法是可以迁移的. 图数据是很多高影响力应用的核心,比如社交和评级网络分析(Facebook.Amazon).基因相互作用网络(BioGRID),以及互连文档集合(PubMed.Arxiv).基于图数据…
SNN对抗攻击笔记: 1. 解决SNN对抗攻击中脉冲与梯度数据格式不兼容性以及梯度消失问题: G2S Converter.Gradient Trigger[1] 2. 基于梯度的对抗攻击方式: FGSM[1-3] R-FGSM[3] I-FGSM[3] BIM[1] PGD[2] 3. 图像转化到脉冲序列的采样方式: Poisson事件生成过程[1-9] 4. SNN类型: SNN-conv(ANN-SNN Conversion)[2-7, 9] 采用的神经元模型 IF神经元模型[2-7, 9]…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设备中,以模拟大脑功能.在这种背景下,SNN的安全性变得重要但缺乏深入的研究,这与深度学习的热潮不同.为此,我们针对SNN的对抗攻击,确认了与ANN攻击不同的几个挑战:i)当前的对抗攻击是基于SNN中以时空模式呈现的梯度信息,这在传统的学习算法中很难获得:ii)在梯度累积过程中,输入的连续梯度与二值脉…
出于实现目的,翻译原文(侵删) Published in: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI 2019) 源码地址:http://www.pami.sjtu.edu.cn/Show/56/115 目录: Abstract I. INTRODUCTION II. TYPE I ATTACK AND ITS RELATIONSHIP TO TYPE II A. Toy Example on Fe…
引言 在对抗样本综述(二)中,我们知道了几种著名的对抗攻击和对抗防御的方法.下面具体来看下几种对抗攻击是如何工作的.这篇文章介绍FGSM(Fast Gradient Sign Method). 预备知识 符号函数sign 泰勒展开 当函数\(f(x)\)在点\(x_0\)处可导时,在点\(x_0\)的邻域\(U(x_0)\)内恒有: \[f(x)=f(x_0)+f'(x_0)*(x-x_0)+o(x-x_0) \] 因为\(o(x-x_0)\)是一个无穷小量,故有: \[f(x)≈f(x_0)+…
XML External Entity attack/XXE攻击   1.相关背景介绍 可扩展标记语言(eXtensible Markup Language,XML)是一种标记语言,被设计用来传输和存储数据.XML应用极其广泛,如: * 普通列表项目文档格式:OOXML,ODF,PDF,RSS…… * 图片格式:SVG,EXIF Headers…… * 网络协议:WebDAV,CalDAV,XMLRPC,SOAP,REST,XMPP,SAML,XACML…… * 配置文件:Spring配置文件,…
攻击 supporting facts 的修改:字符调换,替换词(用空格embedding或近同义词,变形词等) 还有针对question的攻击. 梯度下降,在embediing上做攻击,如何decode是个问题. 防御 如果把大量对抗样本加到训练样本一起训练不够显示,作用不是很大,随时都可能会有新的对抗样本. 2018 Tackling Adversarial Examples in QA via Answer Sentence Selection这篇讲的是先筛选候选句,再进行推理回答. 20…
w http://baike.baidu.com/item/重放攻击 重放攻击(Replay Attacks)又称重播攻击.回放攻击或新鲜性攻击(Freshness Attacks),是指攻击者发送一个目的主机已接收过的包,特别是在认证的过程中,用于认证用户身份所接收的包,来达到欺骗系统的目的,主要用于身份认证过程,破坏认证的安全性. 它是一种攻击类型,这种攻击会不断恶意或欺诈性地重复一个有效的数据传输,重放攻击可以由发起者拦截并重复发该数据到目的主机进行.攻击者利用网络监听或者其他方式盗取认证…
神经网络的表现 在Training Set上表现不好 ----> 可能陷入局部最优 在Testing Set上表现不好 -----> Overfitting 过拟合 虽然在机器学习中,很容易通过SVM等方法在Training Set上得出好的结果,但DL不是,所以得先看Training Set上的表现. 要注意方法适用的阶段: 比如:dropout方法只适合于:在Training Data上表现好,在Testing Data上表现不好的. 如果在Training Data上就表现不好了,那么这…
Classification: Probabilistic Generative Model 分类:概率生成模型 如果说对于分类问题用回归的方法硬解,也就是说,将其连续化.比如 \(Class 1\) 对应的目标输出为 1, \(Class 2\) 对应 -1. 则在测试集上,结果更接近1的归为\(Class 1\),反之归为\(Class 2\). 这样做存在的问题:如果有Error数据的干扰,会影响分类的结果. 还有就是,如果是多分类问题,则在各类之间增加了线性关系,比如认为 \(Class…