YARN线上动态资源调优】的更多相关文章

背景 线上Hadoop集群资源严重不足,可能存在添加磁盘,添加CPU,添加节点的操作,那么在添加这些硬件资源之后,我们的集群是不能立马就利用上这些资源的,需要修改集群Yarn资源配置,然后使其生效. 现有环境 服务器:12台,内存64Gx12=768G,物理cpu16x12=192,磁盘12Tx12=144T 组件:Hadoop-2.7.7,Hive-2.3.4,Presto-220,Dolphinscheduler-1.3.6,Sqoop-1.4.7 分配策略 由于我们的版本是Hadoop-2…
相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 CentOS7安装CDH 第四章:CDH的版本选择和安装方式 CentOS7安装CDH 第五章:CDH的安装和部署-CDH5.7.0 CentOS7安装CDH 第六章:CDH的管理-CDH5.12 CentOS7安装CDH 第七章:CDH集群Hadoop的HA配置 CentOS7安装CDH 第八章:…
Spark调优主要分为开发调优.资源调优.数据倾斜调优.shuffle调优几个部分.开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础:数据倾斜调优,主要讲解了一套完整的用来解决Spark作业数据倾斜的解决方案:shuffle调优,面向的是对Spark的原理有较深层次掌握和研究的同学,主要讲解了如何对Spark作业的shuffle运行过程以及细节进行调优. 本文作为Spark性能优化指南的基础篇,主要讲解开发调优以及资源调优. 一 开发调优 调优概…
参考: https://tech.meituan.com/spark-tuning-basic.html https://zhuanlan.zhihu.com/p/22024169 一.开发调优 1.避免创建重复RDD 对于同一份数据,只应该创建一个RDD,不要创建多个RDD来代表同一份数据. 2.尽可能复用同一个RDD 多个RDD的数据有重叠或者包含的情况,我们应该尽量复用一个RDD,这样可以尽可能地减少RDD的数量,从而尽可能减少算子执行的次数 3.对多次使用的RDD进行持久化 Spark的…
WebSphere 中池资源调优 - 线程池.连接池和 ORB 来自:https://www.ibm.com/developerworks/cn/websphere/library/techarticles/1106_zhuxl_websphereenhancement/1106_zhuxl_websphereenhancement.html IBM WebSphere Application Server (以下简称 WAS)能支持的应用程序越来越多,而这些应用程序有各自的独特特性.需求和服务…
一.概述 每个job提交到yarn上执行时,都会分配Container容器去运行,而这个容器需要资源才能运行,这个资源就是Cpu和内存. 1.CPU资源调度 目前的CPU被Yarn划分为虚拟CPU,这是yarn自己引入的概念,因为每个服务器的Cpu计算能力不一样,有的机器可能是 其他机器的计算能力的2倍,然后可以通过多配置几个虚拟内存弥补差异.在yarn中,cpu的相关配置如下. yarn.nodemanager.resource.cpu-vcores 表示该节点服务器上yarn可以使用的虚拟的…
  在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资…
在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资源使…
1.平常的资源使用情况 2.官网 3.资源参数调优 cores memory JVM 4.具体参数 可以在--conf参数中给定资源配置相关信息(配置的一般是JVM的一些垃圾回收机制) --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M). 给定driver运行的时候申请的内存,默认是1G --executor-memory MEM Memory per executor (e.g. 1000M, 2G)…
摘抄自:https://tech.meituan.com/spark-tuning-basic.html 一.概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常…