交替方向乘子法(ADMM)】的更多相关文章

交替方向乘子法(ADMM) 参考1 参考2 经典的ADMM算法适用于求解如下2-block的凸优化问题( 是最优值,令 表示一组最优解): Block指我们可以将决策域分块,分成两组变量, 这里面 都是凸的.分成2-block是因为3-block及以上的问题性质会差一点,分析起来不太好说清楚(虽然实际当中基本上几个block都可以用,一般都会收敛...). 那么我们这里就可以写出这个凸优化问题的增广拉格朗日函数(augmented Lagrangian function): 注意到这个增广的意思…
交替方向乘子法(ADMM)的原理和流程的白话总结 2018年08月27日 14:26:42 qauchangqingwei 阅读数 19925更多 分类专栏: 图像处理   作者:大大大的v链接:https://www.zhihu.com/question/36566112/answer/118715721来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 多年前第一次接触到ADMM时候我关于优化的基础知识少的可怜(虽然现在也少得可怜),那些公式是什么鬼.当然如果有优…
交替方向乘子法(Alternating Direction Multiplier Method,ADMM)是一种求解具有可分结构的凸优化问题的重要方法,其最早由Gabay和Mercier于1967年提出.ADMM是结合对偶上升法的可分离特性以及ALM松弛收敛条件,所形成的一种改进方法,该算法在大规模数据分析处理领域因处理速度快,收敛性能好而备受关注[1]. 一.对偶上升法(Dual Ascent Algorithm) 对偶上升法是通过对偶变量的更新获得原问题最优解的一种方法.考虑具有等式约束的优…
对偶上升法 增广拉格朗日乘子法 ADMM 交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是一种解决可分解凸优化问题的简单方法,尤其在解决大规模问题上卓有成效,利用ADMM算法可以将原问题的目标函数等价的分解成若干个可求解的子问题,然后并行求解每一个子问题,最后协调子问题的解得到原问题的全局解,适用于大规模分布式优化问题. Lasso的ADMM求解算法…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下拉格朗日乘子.对学过高等数学的人来说比较拉格朗日乘子应该会有些印象.二者均是求解最优化问题的方法,不…
[整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下拉格朗日乘子.对学过高等数学的人来说比较拉格朗日乘子应该会有些印象.二者均是求解最优化…
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助.本文分为两个部分:第一部分是数学上的定义以及公式上的推导:第二部分主要是一些常用方法的直观解释.初学者可以先看第二部分,但是第二部分会用到第一部分中的一些结论.请读者自行选择. 拉格朗日乘子法的数学基础 共轭函数 对于一个函数f:Rn→R(不要求是凸函数),我们可以定义它的共轭函数f⋆:Rn→R为:…
朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解. 1. 拉格朗日乘子法: 这个问题转换为 其中,称为拉格朗日乘子. wikipedia上对拉格朗日乘子法的合理性解释: 现有一个二维的优化问题: 我们可以画图来辅助思考. 绿线标出的是约束的点的轨迹.蓝线是的等高线.箭头表示斜率,和…
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情…
\(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 等式约束问题的必要条件: 一个条件,两变量 \(min f(x)=f([x]_1,[x]_2)\) \(s.t. c(x)=c([x]_1,[x]_2)=0\) 则最优解的必要条件如下面式子所示: \(\triangledown f(x^*)+\alpha^* \triangledown c(x^*…
接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题.对于无约束优化问题: \(\min\limits_\boldsymbol{x} f(\boldsymbol{x})\) (本篇为形式统一,只考虑极小化问题),一般可直接求导并用梯度下降或牛顿法迭代求得最优值. 对于含有等式约束的优化问题,即: \[ \begin{aligned} {\min_{\…
参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下…
增强拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格朗日乘子法的解决方案是: L(X,λ)=f(X)+μh(X); μ:Rm 此时,求解L对X和μ的偏导同时为零就可以得到最优解了. 增强拉格朗日乘子法的解决方案是: Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2 每次求出一个xi,然后按照梯度更新参数μ,c每次迭代逐渐增大(使用ALM方法好像还有…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解.拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证得到的是最优解,所以本文称拉格朗日乘子法得到的为可行解,其实就是局部极小值,接下来从无约束优化开始一一讲解. 无约束优化 首先考虑一个不带任何约束的优化问题,对于变量 $ x \in \mathbb{R}…
拉格朗日乘子法是解决极值问题的方法. 本方法是计算多元函数在约束条件下的极值问题的方法. 1.多元函数与约束问题 如下图所示,f(x,y)为多元函数,g(x,y)=c为约束条件.目的是计算在约束条件下多元函数的极值. 虚线为f(x,y)=d d取不同的值时,将原始图像投影到xy平面时的等高线,在等高线上的f函数值相等: 淡蓝色实线为g(x,y)为xy平面的曲线,对应于不同的(x,y).比如g(x,y)=x+y=1,即x+y=1为约束条件. 那么怎样去寻找极值点? 思路:沿着g(x,y)曲线不断前…
转载自:增广拉格朗日乘子法(Augmented Lagrange Method) 增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t.: h(X)=0 其中,f:Rn->R; h:Rn->Rm 朴素拉格朗日乘子法的解决方案是: L(X,λ)=f(X)+μh(X); μ:Rm 此时,求解L对X和μ的偏导同时为零就可以得到最优解了. 增广拉格朗日乘子法的解决方案是: Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2 每…
拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其为零,可求得候选最优值. (2)有等式约束的优化问题:, 使用拉格朗日乘子法,把等式约束用一个系数与写为一个式子,称为拉格朗日函数.再通过对各个参数求取导数,联立等式进行求取最优值. (3)有不等式约束的优化问题.,,. 把所有的不等式约束.等式约束和目标函数全部写为一个式子:. KKT条件的最优值…
参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 梯度为0, 其实就是说明里面每一个参数的偏导数都为0. 拉格朗日乘子法是对于等式约束. KKT条件是针对不等式约束条件. 拉格朗日乘子法结论 如果有个约束等式: 只需解如下方程组: KKT条件 求如下的极值: 通过解下面这个方程组来得到答案: 这个方程组也就是所谓的KKT条件. 进一步解释下方程组的…