一.导言 本教程适合对人工智能有一定的了解的同学,特别是对实际使⽤深度学习感兴趣的⼤学⽣.⼯程师和研究⼈员.但本教程并不要求你有任何深度学习或者机器学习的背景知识,我们将从头开始解释每⼀个概念.虽然深度学习技术与应⽤的阐述涉及了数学和编程,但你只需了解基础的数学和编程,例如基础的线性代数.微分和概率,以及基础的 Python 编程本教程将全⾯介绍深度学习从模型构造到模型训练的⽅⽅⾯⾯,以及它们在计算机视觉和⾃然语⾔处理中的应⽤.我们不仅将阐述算法原理,还将基于 Apache MXNet 来演⽰它…
感知器-从零开始学深度学习 未来将是人工智能和大数据的时代,是各行各业使用人工智能在云上处理大数据的时代,深度学习将是新时代的一大利器,在此我将从零开始记录深度学习的学习历程. 我希望在学习过程中做到以下几点: 了解各种神经网络设计原理. 掌握各种深度学习算法的python编程实现. 运用深度学习解决实际问题. 让我们开始踏上深度度学习的征程. 一.感知器原型 想要了解“神经网络”,我们需要了解一种叫做“感知器”的⼈⼯神经元.感知器在 20 世纪五.六⼗年代由科学家 Frank Rosenbla…
问题描述 打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题, 但是命令行运行是可以导入mxnet模块的. 原因: 激活环境是能够运行代码的前提. 解决方法: 在d2l-zh目录运行conda activate gluon命令,然后再打开jupyter notebook,则可以正常导入mxnet模块. 参考 1. d2l-zh-doc; 2. [动手学深度学习]中Jupyter notebook中 import mx…
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比较执着,想学pytorch,好,有个大神来了,把<动手学深度学习>整本书用pytorch代码重现了,其GitHub网址为:https://github.com/ShusenTang/Dive-into-DL-PyTorch   原书GitHub网址为:https://github.com/d2l-…
深度学习之TensorFlow安装与初体验 学习前 搞懂一些关系和概念 首先,搞清楚一个关系:深度学习的前身是人工神经网络,深度学习只是人工智能的一种,深层次的神经网络结构就是深度学习的模型,浅层次的神经网络结构是浅度学习的模型. 浅度学习:层数少于3层,使用全连接的一般被认为是浅度神经网络,也就是浅度学习的模型,全连接的可能性过于繁多,如果层数超过三层,计算量呈现指数级增长,计算机无法计算到结果,所以产生了深度学习概念 深度学习:层数可以有很多层,但是并不是全连接的传递参数,如上图中右边是一个…
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络) [UFLDL]Exercise: Co…
前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 难点:本实验难点在于运行时间比较长,跑一次都快一天了,并且我还要验证各种代价函数的对错,所以跑了很多次. 实验内容:Exercise:Independent Component Analysis.从数据库Sampled 8x8 patches from the STL-10 dataset…
前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep learning:二十九(Sparse coding练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 本节实验比较不好理解也不好做,我看很多人最后也没得出好的结果,所以得花时间仔细理解才行. 实验内容:Exercise:Sparse Coding.从10张512*51…
理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一步!如果说原始数据的获得,是深度学习中最重要的一步,那么获得原始数据之后对它的预处理更是重要的一部分. 1.数据预处理的方法: ①数据归一化: 简单缩放:对数据的每一个维度的值进行重新调节,使其在 [0,1]或[ − 1,1] 的区间内 逐样本均值消减:在每个样本上减去数据的统计平均值,用于平稳的数…
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 实验内容:Exercise:Convolution and Pooling.从2000张64*64的RGB图片(它是the STL10 Dataset的一个子集)中提取特征作为训练数据集,训练softmax分类器,然后从3200张64*64的RGB图片(它是th…