OpenCL 图像卷积 3 使用 CPU】的更多相关文章

▶ CPU 图像卷积,共四种方法.分别为基本串行,使用模板,使用局部内存,使用AVX指令优化 ● 全部的代码,仅在主函数中选择调用的函数名即可. #include <stdio.h> #include <stdlib.h> #include <time.h> #include <opencv2/opencv.hpp> const char *inputFile = "R:/1.png"; const char *outputFile =…
▶ 上一篇图像卷积 http://www.cnblogs.com/cuancuancuanhao/p/8535569.html.这篇使用了 OpenCV 从文件读取彩色的 jpeg 图像,进行边缘检测以后写回文件. ● 代码(没有使用局部内存优化) // convolution.cl,核函数,应该和上一篇中无优化内核是一样的 __kernel void convolution(__read_only image2d_t sourceImage, __write_only image2d_t ou…
▶ 书上的代码改进而成,从文件读入一张 256 阶灰度图,按照给定的卷积窗口计算卷积,并输出到文件中. ● 代码,使用 9 格的均值窗口,居然硬读写 .bmp 文件,算是了解一下该文件的具体格式,留作纪念吧. // convolution.cl __kernel void convolution01(__read_only image2d_t inputImage, __write_only image2d_t outputImage, int imageRow, int imageCol, _…
本文重点主要不在于FFT的SSE优化,而在于使用FFT实现快速卷积的相关技巧和过程. 关于FFT变换,有很多参考的代码,特别是对于长度为2的整数次幂的序列,实现起来也是非常简易的,而对于非2次幂的序列,就稍微有点麻烦了,matlab中是可以实现任意长度FFT的,FFTW也是可以的,而Opencv则有选择性的实现了某些长度序列的变换,查看Opencv的代码,可以发现其只有对是4的整数次幂的数据部分采用了SSE优化,比如4.16.64.256.1024这样的序列部分,因此基4的FFT是最快的,而剩余…
图像卷积.相关以及在MATLAB中的操作 2016年7月11日 20:34:35, By ChrisZZ 区分卷积和相关 图像处理中常常需要用一个滤波器做空间滤波操作.空间滤波操作有时候也被叫做卷积滤波,或者干脆叫卷积(离散的卷积,不是微积分里连续的卷积):滤波器也有很多名字:卷积模版.卷积核.掩模.窗口等. 空间滤波可以分为线性滤波和非线性滤波.非线性滤波常见的有中值滤波.最大值滤波等,相当于自定义一个函数,在数学上由于不满足线性变换因此叫做非线性滤波.这里不细研究它. 线性滤波则通常是:将模…
Xinwei: 写的通俗易懂,终于让我这个不搞CV.不搞图像的外行理解卷积和滤波了. 图像卷积与滤波的一些知识点 zouxy09@qq.com http://blog.csdn.net/zouxy09 之前在学习CNN的时候,有对卷积进行一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流. 一.线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果.做法很简单.首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)…
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的个数,kernel_size卷积核的大小,stride步长,padding是否补零 2. tf.layers.conv2d_transpose(input, filter, kernel_size, stride, padding) # 进行反卷积操作 参数说明:input输入数据, filter特…
自己主动编码线性解码器 自己主动编码线性解码器主要是考虑到稀疏自己主动编码器最后一层输出假设用sigmoid函数.因为稀疏自己主动编码器学习是的输出等于输入.simoid函数的值域在[0,1]之间,这就要求输入也必须在[0,1]之间.这是对输入特征的隐藏限制.为了解除这一限制,我们能够使最后一层用线性函数及a = z 习题答案: SparseAutoEncoderLinerCost.m function [cost,grad,features] = sparseAutoencoderLinear…
图片尺寸要自己修改. 看起来好像没啥意思,不知道下一步能干什么,先卷了再说.由于weights是随机生成的(tf.random_normal作用:用于从服从指定正太分布的数值中取出随机数),所以每次卷积后的图像会不一样. 代码: def func19(img_path): # 读取图片,矩阵化,转换为张量 img_data = cv2.imread(img_path) img_data = tf.constant(img_data, dtype=tf.float32) print(img_dat…
卷积基本概念 C++代码实现卷积 #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread("f:/images/lena.jpg"); if (src.empty()) { printf("Could not find the…